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Abstract— A new fast algorithm for computing the discrete 
Hartley transform (DHT) is presented, which is based on the 
expansion of the transform matrix. The algorithm presents a 
better performance, in terms of multiplicative complexity, than 
previously known fast Hartley transform algorithms. A detailed 
description of the computation of DHTs with blocklengths 8 and 
12 is shown. The algorithm is very attractive for blocklengths N ≥ 
128. 

Index Terms— Discrete Hartley transform, fast Hartley 
transform. 

I. INTRODUCTION 
  

Regarded, for many years, essentially as a technique for 
computing Fourier transforms, the Hartley transforms, 
continuous and discrete, became very important tools with 
many applications in several fields of Engineering [1]. In 
particular, the discrete Hartley transform pair is defined, for a 
length-N sequence ,10 ),(  Nnnh  by Equations (1) and 
(2) [2], 
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where  (.)cas  denotes the cosine and sine function defined as 

).sin()cos(:)( iiicas  The DHT, as its continuous 
counterpart, is real and the symmetry of the transform pair is a 
valuable feature for its implementation. 

With the advent of VLSI and the development of the digital 
signal processor (DSP) to implement signal processing 
techniques, discrete transforms, such as the discrete Fourier 
transform (DFT) and the DHT, became attractive tools for 
performing spectrum evaluation. The cost reduction of DSPs 
and the astonishing capacity achieved by up to date processors 
has made real-time applications feasible for several types of 
signals. In this scenario, the successful application of 
transform techniques is mainly due to the existence of the so-
called fast transform algorithms. 

 Over the years, fast algorithms, in terms of multiplicative 
complexity, were introduced for computing the DHT [3-7]. 
This paper proposes a new fast algorithm for computing DHTs 
of sequences of lengths )4(mod 0N . The paper is organized 
as follows. In Section II the DHT transform matrix is 
expressed an expansion involving matrices. In Section III the 
new fast Hartley transform algorithm (FHT) introduced in this 
paper is described and, to illustrate the technique, complete 
examples of the algorithm, to compute blocklength 

12 and  8N  DHTs, are shown in Sections IV and V, 
respectively. The paper closes with some concluding remarks 
on Section VI.  

II. EXPANDING THE DHT TRANSFORM MATRIX 
 

The first step towards the FHT proposed in this paper is to 
rewrite Equation (1) in matrix form, 
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or )(kH =[DHT] ),(nh where, for the sake of simplicity, we 

denote )( 2 kncas N
  by ).(kncas  Considering that, for l and r 

integers,
 

)),(()( 22 rNlcaslcas NN    there are only N distinct 

arguments of (.)cas  in the transform matrix. For every even 
blocklength, N = 2m, there exists an argument ki  yielding the 
eigenvalues of the DHT, i.e., {1, -1}. These terms do not 
contribute to the multiplicative complexity, because 

 
1)4/()0(  Ncascas  

and  
  .1)4/3()2/(  NcasNcas              

 
The arguments of (.)cas  in the above expression generate a 
set of two points that lie on the real axis. This fact is 
associated with the class 

 



C0:={0, N/2, N/4, 3N/4}. 
 

The set of distinct arguments of (.),cas },1,...,2,1,0{  NZ N  
is then partitioned into 4/N  disjoint classes 

)},(mod 44|{: NmiZiC Nm  where .1,...,2,1,0 4  Nm   
Proposition 1. The classes mC  induce a partition of .NZ  
Proof. Suppose that there exists a pair mm’ such that 

'mm CC  . Therefore, there is a common element mCi  
and 'mCi  such that )(mod 44 Nmi   and )´(mod44 Nmi  . 
Therefore )´(mod44 Nmm  , which is the same as 

)4/´(mod Nmm  , a contradiction. The cardinality of a set 

mC for each m is .4 || mC  There are N/4 disjoint classes, 

therefore NNC
N

m
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0
  and the proof is complete.   

Let us introduce the matrix of arguments of (.)cas  in 
Equation (1), an NN matrix ),(: knaA   where 

)),(mod( Nknakn   and an operator l  over  NN matrix, 
for each l = 0,1,2,…, N-1, which yields an NN binary matrix 
whose elements are  

nkml ,, , where  is the Kronecker 

symbol.  
Associated with each class mC  we define the matrix Mm as  
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where )sgn( x   returns the sign of  x. Thus, for instance, 0m  
corresponds to the additive part of the DHT transform matrix, 

)()()()( 4/34/2/00 AAAAM NNN  . 
 
The following proposition shows the symmetries of the  
(.)cas  function, which are important in the construction of 

the fast algorithm described in this paper. 
Proposition 2.  i) ).()( 2 mcasmcas N   

  ii) ).()( 4 mNcasmcas N   
Proof:  
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Proposition 2 implies that, from a given value ),(mcas four 
different values of (.)cas can be obtained. Therefore, only 

4/N   terms )(mcas   are required to compute ).(kH  
From the matrices ,mM ,1,...,2,1,0 4  Nm  the DHT 

transform matrix can be expressed by following expansions: 
i) For N an even multiple of 4, 
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ii) For N an odd multiple of 4, 
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where the matrices  mc MC  and  ms MC  are defined as  
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The multiplicative complexity of the algorithms (Equations 
(4) and (5)) can be computed, respectively, by Equation (6) 
and (7).  
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The procedure to compute the DHT can be summarized as 
follows: 
1. Compute the matrix of arguments (A); 
2. Compute the matrix of classes; 
3. Repeat for all classes: 

3.1. Compute the binary matrix given Equation (4)/(5); 
3.2. Compute the binary matrix in standard echelon form 

(SEF), referred here as rref (row-reduced echelon  
form).  

3.3. Compute the floating point multiplications in the SEF 
binary matrix; 

3.4. Compute the additions to calculate the DHT 
components. 

III. AN  FHT OF BLOCKLENGTH N =8 
 

For N=8, we start by gathering the arguments in the class 
{0, 4, 2, 6}, which are not associated with multiplications. 
This corresponds to the set C0. The matrix A with the 
arguments of the terms in the DHT matrix is 
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There are only N/4=2 classes,  namely, C0 = (0, 4, 2, 6) and 

C1 = (1, 5). 
In this particular case, the greatest index is (N/4)-1=1. 

Indeed, C0 and C1 are a partition of {0,1,2,…,7}, as expected. 
We observe that the class C1 has only two values of 
arguments, because cas(3)=cas(7)=0.  

It is straightforward to observe that given C0, the elements 
of other classes can be derived as follows, 

for m = 0  to (N/4)-1 do 
 for i = 0 to 3 do 
  If i < 2 then 



   Ci,m = mod(C0 + m, N) 
  If i >= 2 then 
   Ci,m = mod(C0 -  m, N). 

 
The operations involving products by the eigenvalues 

(elements of C0) must not be considered as floating-point 
multiplications.  

The matrices of interest in the algorithm are: 
 

 ).()()()( 62400 ABABABABM   
  
The additive matrix M0  is 
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which furnishes rank )( 0M =6. In SEF 
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and rank( 1M )=2, the SEF of which is 
rref(M1):=












10001000

00100010  

In order to evaluate the multiplicative complexity of the 
FHT of blocklength 8, we determine  .mMrank  

The two preaddition matrices associated with the 
multiplicative branches of the algorithm are: 
rref(M1):=












10001000

00100010    

Figure 1 shows a block diagram for implementing the FHT 
algorithm. The total multiplicative complexity is two floating-
point multiplications, which meets the Heideman lower bound 
[8]. From Equation (4), the DHT transform matrix expansion 
is ),1(][ 10 casMMDHT   i.e., 
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Figure 1. Scheme for the computation of a DHT with blocklength N=8. The 
small circles into the -box denote subtraction.  
 
The pseudo-code presented below describes the calculations, 
showing the floating-point multiplications. Moreover, we can 
see that the linear combination of adders involves only 
multiplications by 1 and -1, which are trivial. 
________________________ 
 
Computing the array which executes floating-point multiplications: 
 
For i = 0 to (N-1) 
 VM(i) = 0; 
For i = 0 to (N-1) do 
 For j = 0 to (N-1) do 
  IF MRed(i,j) = 1 then 
   For j = j to (N-1) do 
    Tmp = Tmp + MRed(i,j); 
   VM(i) = Tmp * Cas(m) 
  End 
 End 
End 
 
Computing the array for the final additions: 
 
For i = 0 to (N-1) do 
 For j = 0 to (N – 1) do 
  MC(j,i) = MC(j,i) + M(.)(j,i) * VM(i) 
 
Final additions for calculating the DHT: 
 
For i = 0 to (N – 1) do 
 For j = 0 to (N – 1) do 
  H(i) = H(i) + MC(i,j) 
________________ 
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IV. AN  FHT OF  BLOCKLENGTH N =12 

For ,12N there are 34 N  classes, namely,  
C0 = (0, 3, 6, 9),  
C1 = (1, 4, 7, 10),  
C2 = (11, 2, 5, 8).  

The matrix A with the arguments of the terms in the DHT 
matrix is 
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The relevant matrices are 
 )()()()( 93600 ABABABABM  . 
This additive matrix M0 is then separated into its Cc and Cs 
components, 
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111111111111

)( 0MCC

 

which has rank( 6))( 0 MC c  and 
),()()( 930 ABABMCs   
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which has rank( .2))( 0 MC s  
 )()()()( 82711 ABABABABM  , 
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and rank( .2))( 1 MCc  
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and rank( .6)( 1 MCs  
 ).()()()( 1045112 ABABABABM   
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so rank( .2))( 2 MCc  The SEF of this matrix is the same as 
that of )( 1MCC .  
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which has rank( .6))( 2 MCs  The SEF of this matrix is the 

same as that of )( 1MCS . From Equation (5), the DHT 
transform matrix expansion is 

).2()1(][ 210 casMcasMMDHT   
 

Table 1. Complexity of the power series-based FHT algorithm in terms of the 
number of real non-trivial floating-point multiplications, compared to the 
radix-2 and radix-4 FHT algorithms. 

 
N 

  
Radix-2   

 
Radix-4 

Split-
Radix 

Heideman 
lower bound 

r(N) 

Matrix 
Expansion 

 FHT 
8 4 - 2 2 2  
16 20 14 12 10 12 
32 68 - 42 32 40 
64 196 142 124 84 96 

128 516 - 330 198 256 
256 1284 942 828 438 640 
512 3076 - 1994 932 1408 
1024 7172 5294 4668 1936 3328 
2048 16388 - 10698 3962 7680 
4096 36868 27310 24124 8034 16384 

 
Complexity results for the matrix expansion FHT are shown 

in Table 1, in comparison with Heideman lower bound and 
standard radix-2, radix-4 and Split-Radix FHT algorithms [4]. 
Figure 2 shows the multiplicative complexity of the 
algorithms in Table 1 as a function of N. We must emphasize 
that the complexity for blocklengths N = (8, 32, 128, 512, 
2048), for the Radix-4 algorithm, are not reported in [4]. 

V. CONCLUSIONS 
 

A new fast transform algorithm for the discrete Hartley 
transform of length )4  (mod0N  was proposed, which is 
based upon a new technique to construct a matrix expansion of 
the transform matrix. The procedure takes advantage of the 
symmetries of the expansion matrices to reduce the 
computational load for computing the discrete Hartley 

spectrum. Detailed examples to illustrate the technique were 
presented for N = 8 and 12, but the entire procedure is 
systematic. The fast Hartley transform presented here is also 
easy to implement using DSP or low-cost high-speed 
Integrated Circuits. The algorithm presents a better 
performance, in terms of multiplicative complexity, than 
standard radix-2, radix-4 and Split-Radix Cooley-Tukey FHT 
algorithms. 

 

 
 

Figure 2.  Multiplicative complexity for the radix-2, Split-Radix and matrix 
expansion FHT algorithms and Heideman lower bound, as a function of 
transform blocklength. 
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