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On the Influence of Numerical Representations in
Quantum-Annealing-Based Linear Regression
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Abstract— Quantum annealers are a class of quantum tech-
nologies that have attracted increasing attention due to their nat-
ural suitability for solving combinatorial optimization problems.
Recent works reformulated the linear regression as a Quadratic
Unconstrained Binary Optimization (QUBO) problem, enabling
its implementation on quantum annealers and offering potential
speed-ups for large datasets. However, this QUBO-based formu-
lation requires the definition of a precision vector to represent
the real-valued regression coefficients as integers variables, which
introduces limitations related to the quantization accuracy. In this
work, we investigate several numerical representations strategies
for defining the precision vector. By performing a set of numerical
experiments with synthetic datasets, we analyze the performance
of these strategies in different configurations. Our results that
the strategy usually known as conventional binary representation
provides the best trade-off between performance and resource
efficiency for quantum-assisted linear regression.

Keywords— Quantum Annealing, QUBO, Linear Regression,
Quantum Machine Learning.

I. INTRODUCTION

Quantum computing is a fast-paced emergent technology
that is expected to provide speed-ups for solving problems in-
tractable to classical computers. This computational advantage
stems from the unique properties of quantum bits (qubits) [1],
which leverage quantum mechanical phenomena such as su-
perposition and entanglement to process information more
efficiently, with applications in different fields. For instance, in
recent years, efforts have been made to adapt machine learning
algorithms to quantum computing platforms, with the hope of
achieving improvements in computational efficiency [2, 3].

Among the different quantum computing paradigms, quan-
tum annealing is particularly well-suited for solving optimiza-
tion problems. Since many machine learning tasks involve
minimizing a well-defined cost or loss function, quantum
annealers are naturally appealing platforms for implementing
such models [4]. A key step in adapting machine learning
algorithms to quantum annealers is formulating the optimiza-
tion task as a Quadratic Unconstrained Binary Optimization
(QUBO) problem [5]. In fact, quantum annealers can be
viewed as specialized computers designed to solve QUBO
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problems. Several studies have already adapted machine learn-
ing tasks to the QUBO framework. In this work, we focus on
the reformulation of linear regression as a QUBO problem, as
proposed in [6].

Linear regression is a classical tool for predictive modeling
and is particularly valuable in signal processing and related
fields. It is fundamentally an optimization problem, and as
shown in [6], it can be implemented on current quantum
annealers through a QUBO-based reformulation. That study
demonstrated a computational speed-up of up to 2.8 times
on large datasets. However, one of the main challenges in
implementing linear regression on quantum annealers lies in
encoding of real-valued coefficients using binary variables.

To address the representation of continuous variables within
a binary optimization framework, [6] introduced a precision
vector to encode real-valued regression coefficients. Despite its
usefulness, this approach is constrained by the limited number
of qubits available on current quantum hardware, making the
choice of the precision vector, and, consequently, of the nu-
merical representation, particularly important. Although some
studies have investigated numerical representation in QUBO
formulations, such as in the context of solving systems of
linear equations [7], research on this issue in the context of
regression remains incipient.

In this work, we investigate five strategies for defining the
precision vector. These strategies include the conventional bi-
nary representation (based on powers of two), linearly spaced
values, constant values, and values sampled from uniform and
normal distributions. We analyze the impact of each encoding
strategy on the performance of the regression model under
different experimental configurations. The remainder of the
paper is organized as follows. In Section II, we introduce some
basic concepts of quantum computing. Section III presents
the formulation of linear regression as a QUBO problem. In
Section IV, we describe the methodology used to compare the
different encoding strategies. Sections V and VI present the
numerical experiments and our conclusions, respectively.

II. THEORETICAL BACKGROUND

We present a very brief introduction to some central aspects
of quantum computing, with a particular focus on quantum
annealing, which is central to the present work.

A. Basics of Quantum Computing
In quantum computers the basic unit of computation is

the qubit. It can be mathematically represented as a two-
dimensional complex unit-norm vector on a Hilbert Space:

|ψ⟩ = α|0⟩+ β|1⟩,



XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

where the pair |0⟩ and |1⟩ represents a orthonormal basis
for the state space. Upon measurement, the qubits can be
found in one of the two states, where |α|2 and |β|2 represent
probabilities associated with the state measured. Although
after measurement the qubit is found in either 0 or 1, before
measurement it is in a linear combination, or superposition,
of states, one of the properties that provide advantages in
quantum algorithms.

In quantum computing, there are two main paradigms of
computation: the gate-based approach and adiabatic computa-
tion. Whereas the former uses unitary logic gates to evolve
the state of the qubit to a desired final state – much like
classical computers – the latter prepares the qubits in the
initial ground state of a Hamiltonian (energy function) and
lets an adiabatic time evolution drive the system to a final
Hamiltonian, whose ground state encodes the solution to the
problem. As discussed in the sequel, such a process can be
associated with the resolution of an optimization problem.

B. Quantum Annealers

Quantum adiabatic computers do not yet exist; however
quantum annealing is a closely related approach that already
has experimental implementations. The difference is that in
this approach the conditions for adiabatic evolution are not
perfectly met. Nevertheless, it serves as a heuristic algorithm
which can find the solution or grounds states close to the
solution of the proposed problem [4]. Regarding currently
available technology, quantum annealing is being developed by
several companies, including the Canadian company D-Wave.
Their experimental apparatus lets users define an optimiza-
tion problem in the QUBO or Ising formulation, making it
particularly well suited for binary combinatorial optimization
problems [8].

In the annealing paradigm, the quantum computing process
consists of initializing the quantum hardware in a known low-
energy state of a Hamiltonian, denoted by Hi. The goal is
then to adiabatically, or slowly enough, change this initial
Hamiltonian into a final Hamiltonian, Hf , which encodes
the solution to the desired problem. This process can be
represented by the following system evolution process:

H(t) = A(t)Hi +B(t)Hf , (1)

where t ∈ [0, Tmax], and the boundary conditions are given by:

A(0) = 1, A(Tmax) = 0, B(0) = 0, B(Tmax) = 1.

Essentially, during the annealing process, the contribution
of the initial Hamiltonian decreases while that of the final
Hamiltonian increases. The key aspect is that, if this transition
is sufficiently adiabatic, the system will remain in the ground
state, which means that can reach the ground state of Hf . In
other words, the process will (potentially) find the minimum
of function Hf . Another important point is that the final
Hamiltonian Hf can be engineered, in quantum hardware, to
represent an Ising model. This, in turn, allows one to encode a
quadratic cost function defined over binary variables, without
constraints. Therefore, this annealing scheme can serve to

solve an optimization problem that belongs to the class of
QUBO problems.

In short, the process of programming current quantum
annealers consist of [9]:

1) Define a QUBO formulation for the optimization prob-
lem and convert it into a graph representation;

2) Map the graph onto the topology of the physical quan-
tum hardware;

3) Set the parameters of the final Hamiltonian, which en-
codes the solution to the problem. This involves defining
the interactions and coupling strengths between qubits;

4) Initialize the qubits in an equal superposition of states,
a low-energy configuration that is easy to prepare;

5) Perform quantum annealing, where the system evolves
from the initial Hamiltonian toward the final Hamil-
tonian according to an adiabatic schedule, represented
by (1);

6) At the end of the annealing process, if successful, the
system reaches a low-energy eigenstate of the final
Hamiltonian, ideally corresponding to the global min-
imum of the energy function. A solution is then read
out from the final qubit configuration as a binary string;

7) Since quantum annealing is a heuristic process, the pro-
cedure is repeated multiple times to obtain a distribution
of candidate solutions.

D-Wave’s largest quantum computer to date is the D-Wave
Advantage quantum annealer, which has 5,640 qubits and
40,484 couplers. Despite this, the number of variables that can
be used to solve practical problems remains limited. Based
on the functioning of these machines and the constraints
of current hardware, the problems that can be embedded
into these technologies are still small compared to those we
would like to solve. Therefore, a key challenge is to develop
methods to formulate such problems in the most efficient
way possible to take full advantage of the currently available
architectures. This encompasses the challenges of recasting
continuous optimization problems as integer ones.

III. PROBLEM FORMULATION: QUANTUM-ASSISTED
LINEAR REGRESSION

A. Linear Regression and Notation

Let us begin by introducing the notation adopted here for
formulating the linear regression problem:

• N : number of samples;
• d: number of features (excluding bias term);
• D = d+ 1: number of features including the bias term;
• y ∈ RN : vector of output values;
• X ∈ RN×D: data matrix including input values and bias

term;
• w ∈ RD: vector containing the regression coefficients.
Given a training set of N input-output pairs (xi, yi), the

objective of linear regression is to define a linear model,
parametrized by w, such that ŷ = Xw approximates the
outputs y. This task is formulated by means of the following
optimization problem:

min
w∈RD

J(w) = ∥Xw − y∥22. (2)
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This cost function is a convex quadratic function and the
solution to (2) admits an closed-form expression, given by:

w∗ = (XTX)−1XTy. (3)

B. Quantum-Assisted Linear Regression

To implement linear regression in a quantum annealer, it
becomes necessary to recast the optimization problem (2) as
a QUBO problem. In mathematical terms, a QUBO problem
can be written as:

min
z∈BM

y = zTAz+ zTb (4)

where z ∈ BM is a binary vector, and A ∈ RM×M and
b ∈ RM are parameters of the QUBO problem.

As discussed in [6], a simple expansion of the cost func-
tion (2) leads to:

min
w∈RD

J(w) = wTXTXw − 2wTXTy + yTy. (5)

Note that yTy does not depend on w and, therefore, can be
ignored in the optimization problem.

A last step to reformulate (2) as a QUBO problem is to
define a numerical representation of each regression coefficient
wi as a binary vector. This can be done by introducing a
precision vector p ∈ RK , which maps binary variables to
real values. For each regression coefficient wi, we associate
K binary variables ŵik, so that:

wi =

K∑
k=1

pkŵik, ∀i = 1, . . . , D. (6)

It is possible to write this representation in a matrix notation,
so that:

w = Pŵ, (7)

where P = ID ⊗ pT , so P ∈ RD×KD.
The QUBO formulation of the linear regression problem [6]

can be obtained by substituting (7) into (5), which leads to the
following cost function:

min
ŵ∈BKD

J(ŵ) = ŵTPTXTXPŵ − 2ŵTPTXTy. (8)

This matches the standard QUBO formulation of (4), with:

z = ŵ, A = PTXTXP, b = −2PTXTy.

It is worth mentioning that each coefficient wi takes 2K

distinct values when pk ≥ 0, which is assumed in this
work. This discretization procedure restricts the precision of
w for small K, potentially degrading the regression quality.
Therefore, careful selection of the precision vector p is critical
and will be analyzed in depth in the next section.

IV. METHODOLOGY

A. Strategies for Defining the Precision Vector

The precision vector p has dimension K, so it is necessary
KD qubits to represent all the features. Given the limited
number of qubits currently available in quantum computers, a
trade-off must be made between the number of bits used for
precision and the number of features. In [6], the authors chose

to use K = 2 to test how the linear regression problem scales.
The usefulness of quantum annealing for linear regression,
however, depends on the future availability of a larger number
of qubits and, consequently, the ability to accurately estimate
real-valued coefficients. Currently, we are still limited to a few
qubits. Therefore, it is important to investigate the best ways
to formulate the precision vector, both to improve performance
on current problems and to prepare for scenarios where more
qubits become available. To explore this issue, we test different
numerical representations of the precision vector for various
values of K.

More precisely, in our experiments, we consider the follow-
ing strategies to define the precision vector [7]:

• Conventional binary representation :

pk = 2−k, k = 0, 1, . . . ,K.

• Representation with constant values:

pk =
1

K
.

• Random sampling from uniform distribution:

pk ∼ U(0, 1).

• Random sampling from normal distribution:

pk ∼ N (1/2, 0).

B. Experimental description

The primary objective of our experiments is to evaluate the
impact of different precision vectors on the performance of
quantum-assisted linear regression (QALR). To achieve this,
we generate synthetic datasets and assess how various rep-
resentations affect the quantization process and the resulting
regression error. More precisely, we build synthetic datasets
X consisting of 103 samples, with the number of features set
to D = 2. Although QALR is expected to show advantages
primarily for larger feature spaces [6], we empirically observe
that the typical behavior of the performance is not significantly
affected by an increase in the number of feature dimensions.
Therefore, this limited range for D suffices to evaluate how
different lengths of the precision vector impact performance.

Feature values were generated from samples drawn from a
standard normal distribution. In contrast to [6], which uses
fixed regression coefficients that are always exactly repre-
sentable by the precision vector, we randomly generate real-
valued regression weights w uniformly in the interval [0, 1].
The target vector y is then computed as

y = Xw + ϵn,

where ni ∼ N (0, 1) represents Gaussian noise. We conduct
a series of experiments for different combinations of the
following parameters: number of features D, precision vector
length K, and noise level ϵ. For each configuration, the
experiment was executed 50 times, and we report the average
results.

The evaluation of each experiment is based on the mean
squared error (MSE) between the observed and predicted
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outputs, that is and the signal-to-noise ratio (SNR). The MSE
is defined as:

MSE =
1

N
∥XwQ − y∥22, (9)

where wQ is the quantized solution obtained by solving the
QUBO problem expressed in (8). This metric provides a
standard measure of the regression accuracy. To assess the
effect of quantization noise, we compute the signal-to-noise
ratio (SNR) given by:

SNR = 10 log10

(
σ2
Y

σ2
e

)
, (10)

where σ2
Y is the variance of y, and σ2

e is the variance of the
quantization error, calculated as XwQ−Xw. Both metrics are
computed for each trial, and their average is used to assess the
performance of each parameter configuration.

We have not yet been able to run these tests on D-Wave’s
quantum annealers. Therefore, we consider exact search op-
timization in all cases we analyzed. Naturally, results on
quantum hardware may differ, as quantum annealing does not
always guarantee finding the global minimum of the Hamilto-
nian due to hardware noise and annealing schedule limitations.
Some solutions may therefore not be found. Nevertheless,
the optimization problem is the same in both classical and
quantum settings, they are both solving a QUBO problem.

V. RESULTS

To evaluate the different precision vectors strategies in the
context of QUBO-assisted linear regression, we conducted a
series of experiments using synthetic data with D = 2 features
and N = 1000 samples. The tests were performed by varying
precision vector lengths K = 2 up to K = 11, and two levels
of Gaussian noise given by ε = 0.5 and ε = 1.0.

We provide the results obtained for classical linear regres-
sion, which solves equation 3 (we shall refer to this solution
as classical solver). Unlike the QUBO-based solver, the clas-
sical method does not require quantization and serves as a
benchmark: the SNR from the classical model establishes an
upper bound on quantization quality, while its MSE represents
a lower bound on regression error. It is important to note
that this work does not aim to demonstrate the superiority of
quantum solutions over classical ones—particularly given the
unavailability of quantum annealers. Rather, our objective is to
investigate the behavior of different precision vectors within
the QUBO framework, using classical results as a reference
point to assess each representation.

Figure 1 shows the SNR values for different precision vector
representations as K increases. For both noise levels, a good
SNR is typically above 25 dB, while values below that indicate
dominant quantization noise. In our case, the classical solver
yields SNRs of approximately 45 dB for ε = 0.5 and 40 dB
for ε = 1.0, which serve as practical upper bounds. Figure 2
presents the corresponding MSE values, where the classical
solution provides lower bounds of approximately zero (for ε =
0.5) and one (for ε = 1.0).

We first analyze the case with ε = 0.5. Across all repre-
sentations, the SNR improves as K increases, which aligns

with expectations since greater quantization resolution yields
better signal fidelity. The constant precision vector shows the
slowest improvement, while binary, normal, and uniform rep-
resentations eventually reach or closely approach the classical
upper bound. Among these, the binary representation is the
most efficient, achieving the upper bound at K = 7, thereby
requiring fewer qubits to reach high-quality results.

The MSE values in Figure 2 reflect similar trends. The
binary representation reaches the lower bound more rapidly
than the others, though all representations eventually converge
to it. This highlights that even if MSE is low, significant
differences may remain in the precision of the estimated
weights, a gap effectively captured by the SNR metric.

For the case with ε = 1.0, those trends remain largely
consistent. The binary, normal, and uniform representations
again outperform the constant vector. The binary representa-
tion reaches the upper SNR bound at K = 5, and achieves
the MSE lower bound as early as K = 3, further reinforcing
its efficiency. While stochastic representations (uniform and
normal) perform better under this higher noise setting, they
still do not surpass the binary scheme in terms of overall
efficiency or performance.

The obtained results demonstrate that the choice of pre-
cision vector representation significantly impacts the quality
of linear regression solutions within the QUBO formulation.
In particular, the binary representation provides the best trade-
off between performance and resource requirements, achieving
optimal SNR and MSE values with fewer bits. For the problem
under study, a minimum length of K = 7 for the binary pre-
cision vector appears necessary to ensure sufficiently accurate
quantization.

One limitation of our experiments lies in the restricted
range of regression coefficients, which were constrained to the
interval [0, 1]. This simplification was necessary due to com-
putational limitations, particularly when solving large QUBOs
classically.

VI. CONCLUSIONS

Quantum computing is rapidly advancing and is expected to
become an important technology for solving machine learning
problems. Quantum linear regression, when formulated as a
QUBO problem, has demonstrated advantages over its clas-
sical counterpart. However, its use in real-world applications
remains limited by current hardware constraints, particularly
in representing coefficients with sufficient precision. In this
work, we investigate different number representations for the
precision vector (a structure used to quantize linear regression
coefficients). Our results show that, under current limitations,
the binary representation consistently outperforms constant,
uniform, and normally distributed alternatives. These findings
suggest that the binary representation is the most promising
choice for future studies on quantum-assisted linear regression.

There is still a long way to go before quantum-assisted
regression can be effectively applied to large-scale problems,
and there remains substantial room for improvement in this
initial line of research. For example, a prior study [10] tested
this problem with D = 88 features using K = 2, resulting in
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Fig. 1. SNR for different precision vectors with fixed number of samples and features (N = 1000, D = 2). ε denotes the standard deviation of the Gaussian
noise, with ε = 0.5 and ε = 1.0.

Fig. 2. MSE for different precision vectors with fixed number of samples and features (N = 1000, D = 2). ε denotes the standard deviation of the Gaussian
noise, with ε = 0.5 and ε = 1.0.

K · D = 176 binary variables. After minor embedding onto
quantum hardware, this expanded to 2,939 physical qubits —
currently among the largest instances tested. Using this as a
reference, we estimate that employing a binary representation
with K = 7 would restrict the model to approximately D = 25
features, given current quantum hardware limitations. This
highlights the significant gap between the demands of high-
fidelity numerical representations and the current capabilities
of quantum annealers. Nonetheless, as quantum hardware
continues to advance, the precision requirements identified in
this work may serve as a benchmark.
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