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Abstract— This paper introduces an enhanced channel estima-
tion method for reconfigurable intelligent surface (RIS)-assisted
multiple-input multiple-output (MIMO) communications. Con-
sidering the presence of both the direct link from the base
station (BS) to the user equipment (UE) and the indirect link
via the RIS, we formulate a tensor-based receiver for joint direct
and indirect channel estimation called the TenDICE algorithm.
The proposed receiver relies on an extended parallel factor
analysis (PARAFAC) tensor model for the received pilot signals,
from which the involved (direct and indirect link) channels are
estimated using a simple alternating least squares scheme. The
proposed TenDICE method is compared with the state-of-the-
art least squares (LS) method, Khatri-Rao factorization (KRF)
method, enhanced trilinear alternating least squares (E-TALS),
and the theoretical Cramér-Rao lower bound (CRLB) based on
normalized mean square error (NMSE) and spectral efficiency
(SE). The proposed TenDICE outperforms the LS and E-TALS
methods and performs similarly to the KRF methods while
estimating the direct channel.

Keywords— Reconfigurable intelligent surfaces, channel esti-
mation, PARAFAC decomposition.

I. INTRODUCTION

RIS has been intensely studied over the past few years as a
solution to improve wireless communications in terms of SE
and coverage [1], [2]. In this context, channel estimation is a
significant problem and critical to getting the full benefit of
RIS in wireless communications.

In general and specifically for higher frequencies, the wire-
less communication propagation medium is subject to attenua-
tion and random fluctuations that compromise and undermine
the quality of transmitted information. Due to phenomena such
as fading and refraction, the electromagnetic waves responsible
for information propagation suffer significant losses that affect
the quality of service. As a result, data distortion or even loss
of critical information can occur during transmission. Rapid
growth in the number of connected devices, particularly in
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the next generation of wireless communications, i.e., 5G and
beyond 5G, has presented significant challenges, especially
regarding channel estimation. As a result, extensive research
and studies have been conducted in recent years to enhance
communication quality and maximize network capacity.

The passive RIS is a network device capable of engineering
and manipulating the characteristics of electromagnetic waves
in such a way as to improve the signal-to-noise ratio (SNR)
at the UE [3]. RIS is crucial in enhancing mobile connectivity
and enabling ultra-reliable and massive machine-type commu-
nications. Furthermore, RIS-assisted systems show significant
potential in addressing challenges such as signal degradation
along the transmission path and interference commonly asso-
ciated with direct line of sight (LoS) connections [4].

Tensor-based channel estimation methods enjoy the essen-
tial uniqueness properties of tensor decompositions, which
are not always covered by matrix estimation methods. The
PARAFAC and PARATUCK (hybrid between PARAFAC and
TUCKER models) decompositions are examples of tensor
decompositions that have been shown to effectively exploit
the multidimensional nature of signals in a wireless commu-
nication system, including MIMO systems and millimeter-
wave communications [5], [6], [7], [8], and the design of
transceiver devices is more flexible [9]. According to [10], the
communication channel can be modeled as high-order tensors
and its geometric structure efficiently exploited in conjunction
with tensor decomposition methods.

Several recent works have addressed the problem of chan-
nel estimation for RIS-assisted communications using tensor
decomposition methods. In [9], the authors proposed a MIMO
receiver model in a passive RIS-assisted system, where it
is possible to estimate the channels semi-blindly jointly and
the received data. This work uses the PARATUCK model,
whose algebraic structure allows a semi-blind receiver to be
developed. The theoretical Cramér-Rao bound (CRB) is also
derived to assess channel estimation accuracy. These models
commonly adopt an independent and identically distributed
(i.i.d.) channel assumption, typically based on the Rayleigh
fading channel model. The work [11] explores the intrinsic
geometrical structure of the channel and also the structure of
pilot signals, consequently, decoupling all respective channels
(transmitter, RIS, and receiver) that leads to the development
of low-complexity methods for channel estimation. However,
these numerous works have concentrated on MIMO commu-
nication models where only the transmitter-to-RIS and RIS-to-
receiver channels are considered, with the direct transmitter-to-
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receiver path assumed to be blocked. In [9] the author proposes
a two-stage method named as enhanced trilinear alternating
least squares (E-TALS) for both direct and indirect channel
estimation, where in the first stage, the RIS is turned off to
estimate the direct channel, while in the second stage, the indi-
rect channel is estimated via bilinear alternating least squares
(BALS) by removing the contribution of the direct channel.
This two-stage approach has two fundamental shortcomings.
First, dividing the direct and indirect (RIS-assisted) channel
estimation into two stages implies an extensive processing (and
decoding) delay, limiting the performance under channels with
shorter coherence times. Second, the sequential estimations of
these two links usually involve an error propagation from the
first stage to the second stage, affecting the overall system
performance.

Tensor decompositions have been effectively used in various
scenarios to develop channel estimation and semi-blind joint
detection receivers for MIMO wireless communication sys-
tems. In particular, the widespread adoption of the PARAFAC
tensor decomposition in wireless communications is attributed
to its ability to leverage the inherent multilinear structure
of signals and channels, as well as its powerful uniqueness
properties [12], [8], [7], [5], [13].

This paper proposes a new tensor-based approach in RIS-
assisted communications that can simultaneously estimate the
direct and indirect communication links for a downlink MIMO
communication scenario. Instead of solving the problems in
two stages, we take a different route and formulate a tensor-
based received signal model combining direct and indirect
link signal contributions. We then recast the resulting received
signal tensor as an equivalent third-order PARAFAC tensor
model. This structure allows us to derive a novel tensor-based
receiver capable of jointly estimating all the involved channels
under trivial ambiguities. This is the first work where tensor
modeling simultaneously estimates the direct and indirect
channels in RIS-assisted MIMO communications. Our solution
solves this problem in a single stage, reducing the system
latency associated with the channel estimation task, while
offering an improved performance over competing schemes.

Notations, definitions, and useful properties: Scalars, vec-
tors, matrices, and tensors are denoted by lower case (x), bold
lowercase (x), bold uppercase (X), and calligraphic letter
(X ), respectively. diag(x) denotes the diagonal matrix for the
x vector along the diagonal. vec(X) denotes the vectorization
operation of the X matrix. unvec(x) denotes the inverse
vectorization operation. IM denotes the identity matrix of size
M × M . For two matrices A ∈ CM×N and B ∈ CP×N ,
A ⋄ B ∈ CMP×N denotes Khatri-Rao product between the
A and B. A⊙B denotes the Hadamard produtct between A
and B. a ◦ b is the outer product between a and b vectors.
A† denotes the pseudo inverse of matrix A. ∥A∥F denotes
the Frobenius norm of A [14]. Throughout this work, we use
some important properties, such as [11], [14]

vec(Adiag(b)CT) = (C ⋄ A)b, (1)

(A ⊗ B)(C ⋄ D) = (AC) ⋄ (BD), (2)

(ADA) ⋄ (BDB) = (A ⋄B)(DA ⊙DB). (3)

Fig. 1. RIS-assisted MIMO communication scenario.

The n-mode unfolding of an N order tensor
X ∈ CI1×I2×I3×...×IN is denoted as [X ]n ∈
CIn×I1I2...In−1In+1...IN . A N-order identity tensor is
denoted by IN,R. The n-mode product between a tensor
X ∈ CI1×I2×I3×...×IN with a matrix A ∈ CJn×In is
denoted as (X ×n A) ∈ CI1×...×In−1×Jn×In+1×...×IN [15].
The PARAFAC decomposition for a tensor X ∈ CI1×I2×I3

can be represented as X ≈
∑R

r=1 ar ◦ br ◦ cr (where
ar ∈ CI1 , br ∈ CI2 and cr ∈ CI3 are rank-1 tensors
components) or X ≈ I3,R ×1 A ×2 B ×3 C (where A,B
and C are the factor matrices) [14], [15].

II. SYSTEM MODEL

Consider a MIMO communication assisted by an RIS
having N reflecting elements. The BS communicates with M
antennas to the UE with Q antennas. Furthermore, the BS has
a direct channel with the UE Hd ∈ CQ×M , as shown in Figure
1. The channel H ∈ CN×M represents the BS-RIS path, while
channel G ∈ CQ×N denotes the RIS-UE path. The transmitted
orthogonal pilot signal S ∈ CM×T , where T consists of the
length of the pilot sequence, is received simultaneously via
both direct and indirect paths. We use Hadamard sequences
because they can be transmitted via BPSK (Binary Phase Shift
Keying) that helps the power amplifier to work close to the
saturation region due to the constant modulus property [11].
For the p-th RIS phase-shift pattern, the received signal for
both direct and indirect channels is given as:

Xp = (Gdiag {ωp}H +Hd)S +Np ∈ CQ×T , (4)

where ωp is the p-th phase shift vector of the RIS and
Np ∼ CN (0, σ2

n) is the additive white Gaussian noise
(AWGN) having σ2

n variance. (4) can be further written in
compact form as:

Xp = CDpH̄S +Np, (5)

where the C = [G Hd] ∈ CQ × (N+M) represents the
combined channels, Dp = diag {ω̄p} ∈ C(N+M) × (N+M)

denotes p-th diagonal phase shift matrix, represented as ω̄T
p =

[ωT
p 1T

M ] ∈ C1 × (N+M) and H̄ =

[
H
IM

]
∈ C(N+M)×M is

an “extended” channel matrix. Applying matched filtering to
the p-th received pilot signal can be represented as:

Z̄p = XpS
H = CDpH̄ +N

′

p ∈ CQ×M , (6)
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Fig. 2. Tensor decomposition of the received signal.

where Z̄p ∈ CQ×M represents the filtered cascaded channel
and N ′

p = NpS
H is the filtered noise term. Applying the

vec(·) operator to (6) and using the property (1), we get

vec(Z̄p) = vec(CDpH̄) + vec(N
′

p), (7)

z̄p = (H̄T ⋄ C)ω̄p + n
′

p ∈ CQM×1. (8)

Equation (8) represents the p-th filtered signal vector. Col-
lecting all the pilot sequences received and storing them in a
matrix Z̄ = [z̄1, z̄2, . . . , z̄P ] ∈ CQM×P yields

Z̄ = (H̄
T ⋄C)Ω̄

T
+N ′ ∈ CQM×P . (9)

where the equivalent phase-shift matrix is written in compact
form as Ω̄ = [ω̄1, ω̄2, . . . , ω̄P ]

T ∈ CP×(N+M). (9) is the final
received signal that contains both direct and indirect channels.

III. PROPOSED TENDICE APPROACH

This section discusses the proposed Tensor-based Direct and
Indirect Channel Estimation (TenDICE) algorithm to jointly
estimate the equivalent channel matrices H̄ and C containing
the information of the direct and indirect links.

The received signal (9) can be represented as a third-order
tensor model, as follows [16]:

Z = I3,(N+M) ×1 C ×2 H̄
T ×3 Ω̄ ∈ CQ×M×P , (10)

Z̄ = Z +N ∈ CQ×M×P , (11)

where Z is the noiseless tensor signal (illustrated in Figure
2), I3,(N+M) is the identity core tensor of third order having
rank R = N+M , and N ∈ CQ×M×P is the third order noise
tensor. The received noisy version of tensor Z can be obtained
in (11). In particular, equation (10) corresponds to a third-order
PARAFAC model for the overall received signal, combining
indirect and direct channels. The equivalent channel matrix
C can be estimated by solving the following optimization
problem [11]

min
Ĉ

∥∥∥[Z̄](1) − Ĉ(Ω̄ ⋄ H̄T)T
∥∥∥2

F
, (12)

where [Z̄](1) ∈ CQ×MP is the first mode unfolding of the
noisy tensor Z̄ in (11), which is given by

[Z̄](1) = C(Ω̄ ⋄ H̄T)T + [N ](1). (13)

Similarly, to estimate H̄ , the following problem can be solved:

min
ˆ̄H

∥∥∥[Z̄](2) −
ˆ̄HT(Ω̄ ⋄ C)T

∥∥∥2
F
, (14)

Algorithm 1 TenDICE
Require: Z̄ (11)

1: Set i = 0
2: Set the max number of iterations (Nmax)
3: Initialize: ˆ̄H
4: for i = 1 to Nmax do
5: Ĉi ← [Z̄](1)[(

ˆ̄Ω ⋄ ˆ̄HT)T]†

6: ˆ̄HT
i ← [Z̄](2)[(

ˆ̄Ω ⋄ Ĉ)T]†

7: end for
8: Compute the estimation error (ei) for [Z̄](1)
9: Set tolerance for error

10: Do stopping criterion:
11: if i > 1 then
12: if |ei − ei−1| < tol then
13: Convergence has been achieved.
14: break
15: end if
16: end if
17: Return: Ĉ, ˆ̄H
18: End of algorithm

where [Z̄](2) ∈ CM×PQ is the second mode unfolding of the
noisy tensor Z̄ in (11), given by:

[Z̄](2) = H̄
T
(Ω̄ ⋄ C)T + [N ](2), (15)

The following expressions give the solutions to these problems
in the LS sense:

Ĉ = [Z̄](1)[(Ω̄ ⋄ H̄T)T]†, ˆ̄HT = [Z̄](2)[(Ω̄ ⋄ C)T]†,
(16)

where the Eq. (16) denotes the estimates for the combined
channels Ĉ and Ĥ by LS method

The factor matrices Ĉ and ˆ̄HT can be estimated in iterative
fashion as shown in Algorithm 1. The algorithm requires the
signal tensor Z̄ (11) and the output will be the respective
equivalent channels as previously described.

IV. SCALING AMBIGUITIES AND UNIQUENESS

The uniqueness of the involved channel matrices estimates
is ensured under mild conditions, thanks to the essential
uniqueness properties of the PARAFAC decomposition [15],
[17]. Simple conditions for the identifiability of C and H̄
can be obtained from the equations in (16) by noting that
uniqueness of the LS estimates of these matrices require that
Ω̄ ⋄ H̄T and Ω̄ ⋄C have full column-rank. Otherwise stated,
these rank conditions are necessary for the existence of the
two right inverses in (16) and are translated to

P ≥
(
N +M

M

)
and P ≥

(
N +M

Q

)
, (17)

Combining these conditions, we have

P ≥ max
(
N +M

M
,
N +M

Q

)
. (18)

The equivalent channel H̄ has an identity matrix in its
second block. This structure is exploited at each iteration
of ALS. As a result, the channel Hd is estimated without
scaling ambiguities. Analyzing the intrinsic structure of the
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estimated ˆ̄H and Ĉ factor matrices including unwanted di-
agonal scaling ambiguities as DH̄ ∈ C(N+M)×(N+M) and
DC ∈ C(N+M)×(N+M), respectively, given as

ˆ̄HT =

[
DH

IM

]
︸ ︷︷ ︸

DH̄

[
H
IM

]
, (19)

and
Ĉ =

[
G Hd

] [ DG

DHD

]
.︸ ︷︷ ︸

DC

(20)

To build the final estimate of the cascaded channel T̂ =
Ĥ

T
⋄ Ĝ, we use the property (3) to obtain T̂ = Ĥ

T
⋄ Ĝ =

(DHH
T)T ⋄ (GDG) = (ĤT ⋄ Ĝ)IN , since DH = (DG)

−1.
Hence, we conclude that the estimated cascaded channel
does not need scaling factor correction, since the scaling
ambiguities cancel each other. Note that the direct channel
estimate Ĥd already comes without scaling ambiguity since
we exploit the structure of H̄ by enforcing the second block
to be the identity matrix in each ALS iteration (see (19)). This
implies that DHD in (20) is equal to an identity matrix.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present numerical results for evaluating
the performance of the proposed TenDICE algorithm and
comparing it with state-of-the-art competing methods. The
performance metrics include the normalized mean squared
error (NMSE) for different channel estimation methods and
the spectral efficiency (SE). The NMSE is calculated as

NMSE(T̂ ) =
1

R

R∑
r=1

∥T (r) − T̂
(r)
∥2F

∥T (r)∥2F
, (21)

NMSE(Ĥd) =
1

R

R∑
r=1

∥H(r)
d − Ĥ

(r)

d ∥2F
∥H(r)

d ∥2F
, (22)

where T̂
(r)

= Ĥ
T
(r)⋄ Ĝ(r) , and Ĥ

(r)

d denotes the r-th
run, and R is the total number of Monte Carlo iterations.
Calculating SE involves the design of the precoder f ∈ CM×1

and the combiner w ∈ CQ×1 based on recovered channels
[11]. According to the authors, the algorithm involves two
stages, where the first is based on least squares Khatri-Rao
factorization (LSKRF) in the cascaded channel, and the second
involves singular value decomposition (SVD). Note that the
SE is only based on the cascaded channel Ĥ

T
⋄ Ĝ, only.

Considering a RIS with optimal phases vector (ωopt), and noise
variance σ2

n, the SE is calculated as

SE = log2

(∣∣∣∣∣1 + |wHĜdiag(ωopt)Ĥf |2

σ2
n

∣∣∣∣∣
)
. (23)

Both metrics are being measured as a function
of signal-to-noise ratio (SNR), in dB, defined as
SNR(dB) = 10log10

(
PT

σ2
n

)
, where PT is the power

transmission (in W).
In Fig. 3, the proposed method TenDICE is compared to

the other competing methods, i.e., the LS method [16], the

Fig. 3. TenDICE performance (estimation of the cascaded channel T ).

Fig. 4. TenDICE performance (estimation of the direct channel Hd).

Fig. 5. SE performance (in bits/bits per channel use) (RIS-assisted link).

KRF method [16], unstructured CRLB [16], and the two-stage
method E-TALS [9]. We consider N = 16 reflecting elements
at the RIS, M = 4 number of antenna elements at the BS, and
Q = 4 antenna elements at the UE, respectively. The proposed
TenDICE method outperforms the classical LS [16] and two-
stage E-TALS [9] methods, and maintains similar performance
as the KRF method [16]. However, unlike the competing meth-
ods, our proposed TenDICE method still estimates the direct
channel simultaneously. The E-TALS method [9] estimates the
direct channel and, in the second stage, estimates the indirect
channel by employing the direct channel from the first stage.
Consequently, the error propagates from the first stage to the
second stage, deteriorating the overall performance. Secondly,
the two-stage approach is also spectrally inefficient and has an
estimation delay for getting all the indirect and direct channels.
Fig. 4 shows the NMSE base performance comparison of
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TABLE I
SIMULATION PARAMETERS

Parameter Value
N {8, 16, 32, 64, 128}

P (time slots) N
M 4
Q 4
T M

MC (Monte Carlo) 103

Tol (tolerance) 10−6

PT (Tx power) 1

TABLE II
RUNTIME FOR DIFFERENT VALUES OF N IN EACH METHOD

N LS KRF TenDICE
8 0,0648 ms 0,457 ms 0,968 ms
16 0,2 ms 1,3 ms 1,7 ms
32 0,716 ms 3,1 ms 6,2 ms
64 1,5 ms 4,5 ms 12,6 ms

128 12,4 ms 14,4 ms 108,2 ms

the proposed TenDICE method and the first stage of the
[9] E-TALS method, where matched filtering is employed to
estimate the direct channel. It is shown that our proposed
TenDICE method substantially outperforms the competing
method, proving that exploiting the tenosr structure improves
the noise rejection and thus improves the performance.

Fig. 5 shows the SE performance of the proposed method
compared with the competing LS, KRF, and E-TALS methods.
To have a fair comparison, we also assumed the precoder and
combiner on true channels. It is worth mentioning that the LS
and the KRF methods show similar performance as compared
to the proposed TenDICE method, while E-TALS shows a
slight degradation in the lower SNR regime. All the methods
show identical performance as compared to the ideal case in
the higher SNR regime. Analyzing Table II, we can conclude
that as the number of RIS elements increases, the execution
time for each method also increases. Still, TenDICE has a
much higher execution time than the other methods, but with
the benefit of simultaneous direct and indirect channels.

VI. CONCLUSIONS AND OUTLOOK

This paper proposed an estimation algorithm for direct and
indirect channels simultaneously in a passive RIS communi-
cation system. The TenDICE model has shown promise for
this type of estimation, according to the results of NMSE and
SE, compared to LS, KRF, the two-stage E-TALS methods,
and the CRLB as the reference bound. At this point, it is
essential to mention that we are using unstructured channels
and therefore LS satisfies CRLB [11]. Another important thing
about our proposed model is that we do not need to correct
the scale factor when recovering the direct channel, and this
is due to the matrix and tensor properties that are features of
the model and the effect of the direct channel that removes
scaling ambiguities. Alternative RIS configurations can be
explored for future work. For example, in [18], the authors
proposed tensor-based channel estimation schemes for beyond
diagonal (BD)-RIS, which implies non-diagonal scattering
matrices. In this context, extending the TenDICE receiver to
BD-RIS is a topic for future work. Considering RIS with
hardware impairments [19] and evaluating its impact on the
proposed receiver’s performance is also a topic under study.

Furthermore, for future work, the computational complexity of
TenDICE can be explored and compared with other estimation
methods.
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