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Abstract— Millimeter Wave (mmWave) communications, vital
for 5G/6G, addresses sub-6 GHz congestion but needs directional
beamforming due to high path loss. Machine Learning (ML) for
beam selection faces scarce indoor training data for creating
robust ML models. A by-product of Digital Twin (DT) frame-
works is the generation of realistic synthetic datasets, which
help training ML models. This work presents and validates
a methodology to construct accurate DT from low-cost radio
measurements. A DT of an indoor mmWave multiple input single
output (MISO) system, using Wireless Insite ray tracing, was
developed. It achieved 100% top-1 beam accuracy and strong
received signal strength correlation in line-of-sight conditions.

Keywords— Beam selection, channel modeling, millimeter-
wave, MIMO, ray-tracing, RSS.

I. INTRODUCTION

Wireless communication, enabled by 5G and emerging 6G
technologies, is key to supporting high data rates, low latency,
and massive connectivity, especially in dense and mobile
settings. Due to the limited availability of sub-6GHz spectrum,
Millimeter Waves (mmWave) have gained prominence for
offering wide bandwidth and enabling compact device designs,
despite their susceptibility to higher path loss and signal fading
[1]. To address these propagation challenges, Multiple Input
Multiple Output (MIMO) architectures are essential in 5G
systems, especially those employing beamforming techniques.
By focusing energy in specific directions, beamforming en-
hances signal strength, improves link reliability, and increases
spectral efficiency, making it crucial strategy for effective
communication at high-frequency mmWave bands [2].

Measurement campaigns using beamforming transceivers
build datasets for training Machine Learning (ML) models
for beam selection [3], but such campaigns are expensive,
complex, and resource-intensive. In this context, simulating
real-world environments through Digital Twin (DT) becomes
a powerful tool to generate more extensive and rapidly exe-
cutable datasets [4]. A robust alternative is the Ray Tracing
(RT) approach, which enables accurate modeling of signal
propagation in realistic physical settings, offering reference
data for performance evaluation and significantly reducing the
need for field measurements.

Recent studies have explored this simulation-based method-
ology with promising results. For instance, Yuan et al. [5]
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demonstrated the accuracy of RT simulations in reproducing
measured behavior in complex scenarios involving advanced
antenna configurations, with a focus on detailed channel mod-
eling for next-generation wireless systems. While their contri-
bution provides valuable insights for channel characterization,
our approach differs by using a simplified representation at
a fixed frequency. This simplification enables a more direct
and practical evaluation of beam selection strategies, using the
same antenna configuration and codebook employed in real-
world. Complementarily, Jiang et al. [6] use RT-based digital
twins to train ML models for beam prediction in mmWave
systems, leveraging synthetic environments that capture key
spatial features like user position and geometry. Their valida-
tion relies on neural network–predicted beam indices at the
inference level, whereas we perform physical-layer validation
by directly comparing simulated and measured received power,
enabling a more rigorous assessment of the Digital Model
(DM) accuracy in replicating beam selection behavior.

This paper introduces a foundational methodology for de-
veloping DT for beam selection procedure based on data from
low-cost radio setups, with the goal of refining the process of
constructing DM and addressing the scarcity of training data.
The approach focuses on improving the modeling process by
incorporating elements from real-world experiments, evaluat-
ing the model’s ability to reproduce signal variation patterns
observed in physical measurements. To this end, we employ
a combination of statistical, signal-based, and ranking-based
metrics to compare simulated behavior with actual measure-
ments. Results show that while the proposed methodology
successfully captures key patterns, further refinements are
required to enable robust and scalable digital twin development
for future wireless applications.

II. SYSTEM MODELING

In this study, the modeling process is achieved by con-
ducting and evaluating experiments within a static scenario,
where data inputs are manually controlled and without real-
time synchronization to physical system. This approach is
more precisely characterized as a DM [7], as it lacks dynamic,
bidirectional synchronism inherent to a fully realized DT.

Our setup, located in a laboratory room, represented at
Figure 1, involves measurement campaigns using commercial
radios configured in a Multiple Input Single Output (MISO)
arrangement. The Base Station (BS) employs a Uniform Planar
Array (UPA) with Ntr antenna elements dedicated to Real
Experiments (RE) and Nts elements for Simulation Exper-
iments (SE), communicating with three single-antenna User
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Fig. 1. Beam selection on DM of indoor scenario.

Equipments (UEs)s and these measurements are conducted
at a mmWave carrier frequency of fc. In parallel with the
measurements, we simulate the electromagnetic propagation
within a digital model of this room. For that, we employ
the Wireless Insite (WI) RT simulator (v3.4.5) to implement
SE. WI simulates accurately reflection, diffraction, scattering,
fading and absorption, with a set of rays launched from
the transmitter, each characterized by gain, phase, Angles of
Departure (AoD), and Angle of Arrival (AoA) in spherical
coordinates (azimuth ϕ and zenith θ), used for total ray gain
calculation, by combining antenna patterns and path gain.

The channel model in SE initially yields a Nts × 1 channel
matrix (H) per UEs. This corresponds, via precoding, to the
(Ntr)×1 effective channel representation relevant to the active
antenna elements used in the RE. Each element of the matrix
represents the complex propagation factor gk =

√
Gke

iθk

for a specific Transmitter (Tx)-Receiver (Rx) antenna pair.
Here, Gk denotes the power gain from the transmit element to
receive element k, and θk represents the corresponding phase
shift. The complete structure of the channel matrix (H-matrix),
incorporating these factors, is given by

H = [g∗
1,g

∗
2, ..,g

∗
k], (1)

where * denotes the conjugate transpose operation [8].
Beamforming at the BS uses a codebook of Nc codewords

(Ntr ×Nc for RE, Nts ×Nc for SE). In SE, corner antenna
deactivation is modeled using zero magnitude entries and row-
major index remapping to match the BS setup. The combined
channel, given by

yi = Hfi, (2)

results from applying the precoding vector f (from the code-
book) to the H-matrix. For SE evaluation, a 1 mW transmit
power is assumed for this combined channel, with results
converted to dBm. The main focus is beam selection, which
involves choosing the best beam from the Nc predefined code-
book options based on the highest Received Signal Strength
(RSS). This optimal beam index i is determined by

îoptimal = arg max
i∈{1,...,Nc}

|yi|. (3)

Finally, in the RE, the required RSS values for this selection
process are obtained by converting measured Received Signal
Strength Indicator (RSSI) according to [9], where

RSS = 0.0651 · RSSI − 74.3875. (4)

Fig. 2. Room layout showing dimensions, BS/UE radio positions and UPA
orientations.

III. MEASUREMENTS AND RT SIMULATION CAMPAIGNS

To validate the proposed beam selection approach based
on H-matrix data from WI, MIMO channel measurements
were carried out along with their simulated equivalents. These
measurements aimed to provide a reliable ground truth for
assessing the accuracy and effectiveness of the simulated
results. This section presents the measurement setup, the
corresponding DM used and the post-processing applied for
comparative analysis.

A. Real Environment

Mikrotik wAP 60G radios (IEEE 802.11ad) were used for
data acquisition during the measurement campaign in a meet-
ing room with the original furniture arrangement preserved to
ensure environmental realism. BS and UEs were positioned at
the same height, with the BS’s UPA boresight oriented 90◦

clockwise. The UEs was evaluated at three positions: in the
boresight Line-of-Sight (LoS) scenario, RC (closest to BS,
UPA boresight 90◦ counterclockwise) and RB in off-boresight
LoS (farther from BS, UPA boresight 45◦ counterclockwise);
and in multipath-dominant LoS scenario, RA (UPA facing
the positive x-axis), as illustrated in Figure 2. Furthermore,
the BS employed a UPA composed of Ntr = 36 antenna
elements in a 6×6 configuration, with four corner elements
disabled. To suppress back radiation, a metallic plate was
placed behind the array, while each element was a dual-
polarized crossed dipole, providing diversity and multipath
robustness. The system uses a client-server architecture where
a central Orchestrator manages clients and data acquisition
and reception. In this setup, the clients, comprising radios
operating in Station (STA) mode, capture RSSI and transmit
the measurements to the server. Based on the reported RSSI
values, the RSS parameter (defined in Eq. 4) is computed
and then used to find the optimal beam pair. For operation,
the system requires at least one radio configured in Access
Point (AP) mode and another in STA mode. Beside, to prevent
data inconsistencies during beam sweeping, the RSSI sampling
interval was fixed at 200ms. Finally, due to the static nature
of the measurement environment and the low variability across
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Fig. 3. Representation of the real scenario as a 3D model within the WI
simulation software and dipole radiation pattern.

samples, each data collection consisted of 50 RSSI readings.
The average of these values was then extracted and used for
the beam selection analysis.

B. Digital Environment

The 3D environment in Figure 3 was modeled in Blender,
accurately aligned with real-world dimensions. However, to
simplify the scene and reduce computational cost, certain
objects were removed or had their mesh complexity reduced
by decreasing the number of faces. For the simulation itself,
the widely adopted RT tool WI was utilized, as its comprehen-
sive features enable highly accurate reproduction of the real
environment’s physical characteristics. Within this simulation
framework, the electromagnetic properties of materials were
assigned according to International Telecommunication Union
(ITU) recommendations at fc = 60GHz [10], while the
X3D propagation model was employed to consider multiple
wave interactions with the environment. Besides, simulation
configurations, including Tx and Rx positions, the UPA layout
at the Tx side (Nts = 36), and operating frequency, were set
to replicate the measurement campaign conditions.

Although the measurements utilized crossed dipoles, a sim-
plified model employing a single vertically polarized dipole
was adopted for each antenna element in the RT simula-
tion. This simplification was necessary due to the inherent
challenges in exporting the more complex radiation pattern
of the measurement’s crossed dipoles into the WI software,
with the gain of this simulated dipole model being dependent
on antenna type and orientation. Additionally, to accurately
account for the reflective effects from the metallic plate
behind the actual MikroTik UPA and thereby replicate the
observed suppression of back radiation, these simulated dipole
antennas were configured to radiate only within the 180◦ to
360◦ azimuthal range. A comprehensive summary comparing
the configurations adopted in both the measurement and RT
simulation campaigns is provided in Table I.

C. Post-processing: Codebook Implementation

H-matrix is generated according to the procedure described
in Eq. 1, and subsequently exported to the main processing
script, where the equivalent channel is constructed as described
in Eq. 2. This equivalent channel incorporates the same

TABLE I
CONFIGURATIONS IN MEASUREMENTS & RT SIMULATIONS

Parameter Value

Common

Operating frequency 60.48 GHz
Tx and Rx height 0.70 m
Transmit array (Tx) 6×6 UPA (36 elements, 4 disabled)
Receive antenna (Rx) Single element
Beamforming method Beam sweeping

Measurements

Hardware MikroTik wAP 60G
Standard IEEE 802.11ad [11]
Antenna type Crossed-dipole
Antenna polarization Dual (Vertical+Horizontal)
Measurement duration 50 s (250 samples)
RSS sampling interval 200 ms

RT Simulations

Simulation tool Wireless InSite
Antenna type Dipole
Antenna polarization Vertical
Propagation model X3D
Material database ITU Rec. [10]
Max interactions 6 reflections, 1 diffraction

codebook with Nc = 64 used by the physical antenna array.
Finally, two key pieces of information are extracted from the
equivalent channel: the received power corresponding to each
beam pair, obtained from the magnitude of the equivalent
channel, as well as the selected beam pair at the three receiver
positions defined in Eq. 3. In the subsequent sections will be
present and compare the results obtained from both campaigns
to validate the overall performance.

IV. VALIDATION RESULTS

This section compares measured RSS values with simu-
lated equivalent channel magnitudes under boresight LoS, off-
boresight LoS and multipath-dominant LoS conditions. The
performance of the DM approach is then evaluated using 4
key metrics. The Pearson Correlation Coefficient (PCC) is
employed to quantify the linear relationship between the RSS
distributions observed in the real and simulated scenarios,
the RSS Mean Absolute Error (MAE) between SE and RE
of each Rx is compared to each other to quantify impact
of Rx position change on results of approaches used. Top-
K beam selection accuracy is assessed by comparing beam
selections in the real environment versus those in the simulated
environment, while Precision@K measures the proportion of
Top-K correctly predicted beams in SE using Top-K from RE
as ground truth to evaluate overall ranking fidelity.

TABLE II
ERROR AND CORRELATION OVER SE TO RE

Receiver RA RB RC

MAE (dBm) 3.145 2.233 3.436

STD (dBm) 2.708 1.747 2.316

Normalized MAE 2.739×10−1 1.286×10−1 1.621×10−1

PCC 1.767×10−1 4.256×10−1 6.605×10−1

ρ-value 1.625×10−1 4.553×10−4 2.872×10−9
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Fig. 4. Comparison of RE (violin plot with 50 sample per codeword) and SE RSS on receivers by codeword index.

A. RSS Distribution Analysis

To assess the linear correlation between the RSS distri-
butions from the real and simulated scenarios across all 64
beams, we employed the PCC [12]. Table II presents the
calculated PCC values and their corresponding ρ-values for
each receiver, considering a significance level of 99% to reject
the null hypothesis (H0), where linear correlation is zero. For
this, the RSS from real measurements (obtained by averaging
50 samples per beam) was correlated with the corresponding
single simulated RSS value for each beam. Although the
receiver RA, under multipath-dominant LoS, showed a weak
correlation and not sufficient statistic evidence to reject H0,
receiver RC (favorable condition), demonstrated a strong
correlation, while RB , with a off-boresight LoS and located
farther from the Tx, exhibited a moderate correlation, both
with sufficient statistic evidence to reject H0. Figure 4 visually
supports these distributional comparisons, displaying mea-
surement data via violin plots (showing 50-sample variation)
alongside simulated channel magnitudes converted to dBm
(assuming 0 dBm Tx power for this visualization). While mea-
sured data shows greater variability (evident in violin plots,
potentially from channel/equipment effects), simulated values
align well with measurement medians, indicating effective cap-
ture of underlying signal strength trends. Due to a significant
mean difference between absolute measured and simulated
values, an approximate −23.5 dBm offset—derived from the
overall MAE between their average RSS—was applied to the
DM data. This adjustment aligns their means, facilitating a
more effective relative comparison and qualitative validation.
Further quantitative assessment, provided in Table II, includes
MAE, Standard Deviation (STD) of the error and normalized
MAE (defined as MAE divided by the RE RSS range per
Rx). The normalized MAE for receiver RA is approximately
twice that of RB and RC , which show similar alignment
with RE. Despite using the same scenario and methodology to

measure RSS across receivers, differences in receiver position
affect path gain and antenna pattern gain via AoD and AoA.
Given the LoS conditions, scenario-related discrepancies are
minimal. Thus, the significant MAE disparity for RA likely
stems from SE antenna radiation pattern, adversely impacted
by RA’s sidelong position relative to the transmitter.

B. Beam Selection
To evaluate the DMs beam prediction performance, we

use Top-K accuracy [13] and Precision@K. Top-K accuracy
describe if the optimal beam index from RE is in the Top-K
predicted beam set from SE, while Precision@K measures the
proportion of Top-K correctly predicted beams in SE, BSE

K ,
relative to the RE Top-K ground truth set, BRE

K . The concept
is similar to precision metric described in [14], where true
positives number is divided by all assigned as positive, but
here true positive is the number of beam index present in both
sets, and the number of all positives is the set length, Top-K
indices. It is obtained by

Precision@k =
|BSE

K ∩BRE
K |

K
× 100%, (5)

where | · | denotes set cardinality. First, each receiver has
its beams ranked by decreasing equivalent channel magnitude
(SE) and average measured RSS from samples (RE). From
these rankings, Top-K and Precision@K results are obtained.

Top-1 accuracy was 100% for all receivers, that is, single
best simulated beam matched the best real beam, but this
metric provides limited insight into overall ranking fidelity.
To further evaluate performance, we analyzed Precision@K,
as shown in Figure 5. This metric compares the set of Top-K
indices from the SE with those from the RE, bench marked
against a ’dummy’ line representing random selection. For
RA, Precision@K indicated that only the optimal beam was
common to both sets for K values from 1 up to 7. Its proxim-
ity to the dummy baseline suggests challenging propagation
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Fig. 5. Precision@K from each receiver over Top-K predicted beams.

conditions. This could be attributed to inaccuracies in the
simulated antenna radiation pattern approach, limitations of the
codebook’s angular coverage, or RA’s less favorable, oblique
position relative to the Tx. RB’s Precision@K behavior was
initially similar to RA’s but showed improved performance
beyond K=6. This might indicate that the chosen antenna
radiation pattern model was a slightly better fit for RB’s
diagonal position. In contrast, RC initially achieved 100%
Precision@K, indicating perfect rank agreement for the top
beams. A dip at K=4, followed by a return to 100% at
K=6, highlights minor ranking mismatches. However, RC’s
overall performance remained consistently high (around 80%
or above), likely due to its favorable position directly in front
of the Tx. Comparing receivers results to each other, it was
observed increase of ranking mismatches as the angle of Rx
position relative to Tx normal grew. These results underscore
the significant impact of receiver positioning and antenna
modeling fidelity on beam prediction accuracy. However, even
under unfavorable conditions, the simulation model success-
fully identified the same optimal beam as determined from the
real measurements in all cases.

V. CONCLUSIONS

The objective of this work was to advance towards com-
prehensive DT by developing and validating a methodology
for building accurate DMs derived from low-cost radio setups
based on RT—envisioned as a key component for a future
DT capable of operating in dynamic, mobile environment—by
comparing its predictions against real-world measurements,
using the Top-K beam selection accuracy, Precision@K, nor-
malized MAE and PCC (all based on RSS) as the main
performance indicators at this initial stage. PCC results demon-
strated a strong correlation in the RSS distribution across all
beams between the model and measurements under boresight
LoS condition, at top-1 all receivers achieved 100% accuracy,
Precision@K showed overall ranking fidelity, where ranking
mismatches increased as the angle of the receiver position
relative to the transmitter direction increased, normalized
MAE comparison between receivers suggest approach antenna
radiation pattern as dipole was the cause. Notably, these
outcomes were achieved despite simplifications in modeling
the scenario and, crucially, the antenna radiation patterns
(single dipole vs. crossed dipole). Furthermore, the RT model
consistently underestimated path loss compared to real-world
measurements, what points to inaccurate setting of Tx trans-
mission power. Actual work requires refined calibration for
accurate absolute power estimates, such as the applied average

MAE offset. Future works should focus on mitigating cur-
rent model limitations by, for example, incorporating a more
accurate antenna radiation pattern (such as crossed dipole),
accurately setting the Tx transmission power to improve its
radio characterization within the digital model, and evaluating
performance in scenarios where directivity benefits are more
pronounced. Additionally, investigating the approach of simu-
lating a Single Input Single Output system via RT followed by
post-processing to generate MISO results could be explored to
reduce simulation time for potential real-time DT applications.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) – Finance Code 001; the Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq); the Brasil
6G project (01245.020548/2021-07), supported by RNP and
MCTI; the Innovation Center, Ericsson Telecomunicações
S.A., Brazil; OpenRAN Brazil - Phase 2 project (MCTI grant
Nº A01245.014203/2021-14); Project Smart 5G Core And
MUltiRAn Integration SAMURAI (MCTIC/CGI.br/FAPESP
under Grant 2020/05127-2).

REFERENCES

[1] W. Chen et al., “5G-Advanced Toward 6G: Past, Present, and Future,”
IEEE Journal on Selected Areas in Communications, vol. 41, no. 6,
pp. 1592–1619, 2023.

[2] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-Wave Cellular
Wireless Networks: Potentials and Challenges,” Proceedings of the
IEEE, vol. 102, no. 3, pp. 366–385, 2014.

[3] A. Oliveira, D. Suzuki, S. Bastos, I. Correa, and A. Klautau, “Machine
Learning-Based mmWave MIMO Beam Tracking in V2I Scenarios:
Algorithms and Datasets,” in IEEE Latin-American Conf. on Commun.
(LATINCOM), pp. 1–5, 2024.

[4] O-RAN Alliance, “Digital Twin RAN: Key Enabling Technologies
Research Report,” tech. rep., O-RAN ALLIANCE, 2023.

[5] Z. Yuan, J. Zhang, V. Degli-Esposti, Y. Zhang, and W. Fan, “Efficient
Ray-Tracing Simulation for Near-Field Spatial Non-Stationary mmWave
Massive MIMO Channel and Its Experimental Validation,” IEEE Trans.
on Wireless Commun., vol. 23, no. 8, pp. 8910–8923, 2024.

[6] S. Jiang and A. Alkhateeb, “Digital Twin Based Beam Prediction:
Can We Train in the Digital World and Deploy in Reality?,” in IEEE
International Conf. on Commun. Workshops, pp. 36–41, 2023.

[7] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital Twin
in Manufacturing: A Categorical Literature Review and Classification,”
IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018.

[8] Remcom Inc., Wireless InSite 3.3.0 User Manual, 2018. Chapter 21,
Section 1.3.

[9] Y. Song, C. Ge, L. Qiu, and Y. Zhang, “2ACE: Spectral Profile-
driven Multi-resolutional Compressive Sensing for mmWave Channel
Estimation,” Proceedings of the 4th ACM Workshop on Millimeter-Wave
and Terahertz Networks and Sensing Systems, pp. 7–12, 2023.

[10] R. S. I.-R. International Telecommunication Union, “Effects of building
materials and structures on radiowave propagation above about 100
MHz,” Recommendation ITU-R P.2040-1, International Telecommuni-
cation Union, July 2015. Available at: https://www.itu.int/rec/R-REC-
P.2040-1-201507-I/en.

[11] R. S. I.-R. International Telecommunication Union, “IEEE Standard for
Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications Amendment 3: Enhancements for Very High
Throughput in the 60 GHz Band,” Standard IEEE Std 802.11ad-2012,
IEEE, 2012.

[12] F. J. Gravetter and L. B. Wallnau, Statistics for the Behavioral Sciences,
ch. 15, pp. 489–509. Boston, MA: Cengage Learning, 10 ed., 2017.

[13] 3GPP, “TR 38.843: Study on Artificial Intelligence /Machine Learning
for NR Air Interface,” technical report, 3rd Generation Partnership
Project, Technical Specification Group Radio Access Network, 2023.

[14] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.


