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Experimentation of online models for scalability of
5G network functions
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Aldebaro Klautau, Cristiano Bonato, and Glauco Gongalves

Abstract— The increasing evolution of 5G networks and the
growing demands of new devices pose significant challenges to
the proactive scalability of network functions. Deployed in a
non-stationary environment, the performance of conventional
predictive models drops as new concepts appear, making it
necessary to use techniques as online learning, which are still
underexplored. This work evaluates and compares fifteen online
learning strategies for the scalability of the Access and Mobility
Management Function (AMF). This paper contributes to identi-
fying more effective approaches using real data in scenarios with
concept drift. Results indicate that model efficacy is contingent
on predictive accuracy and adaptation latency.
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I. INTRODUCTION

Current mobile networks face the challenge of meeting the
demands of new applications, such as autonomous vehicles
and massive communications. These challenges, despite their
differing requirements [1]], pose a common threat to the
network, potentially disrupting your work by coping with
an increasing number of devices. Increasing control traffic
can cause congestion in the control plane, leading to service
provisioning failures. In this sense, the correct dimensioning
of network functions at the 5G core (5GC) is essential to avoid
service interruptions [2].

Figure [ shows a conceptual view of a scalability system for
the 5GC. Focusing on the control plane, the figure indicates
that control traffic is sent from the User Equipment (UE) to
the 5GC, through the base station (gNodeB). At its core, the
traffic is received by the Access and Mobility Management
Function (AMF), which is responsible for establishing UE
sessions and serves as the gateway to other SGC functions.
In a scalable SGC, AMF replicas are executed on a network
function set, and the traffic is distributed between replicas
by a Load Balancer. Furthermore, the Scaling Module scales
instances horizontally according to the traffic demand.

Two main strategies can be used for scaling: reactive and
proactive. Reactive strategies use current traffic demand and
thresholds to create or remove instances. Despite its sim-
plicity and versatility, the time it takes between decision-
making and the effective instance creation/removal can lead to
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service oscillations, i.e., an instance being recreated after its
removal. Conversely, proactive methods use predictive models
to anticipate demand. Therefore, the Scaling Module makes
decisions based on information provided by a Forecasting
System, usually a machine learning model, which predicts
future demands from collected data traffic. Thus, the method
anticipates instance creation/removal, avoiding oscillations.
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Fig. 1: Conceptual view of a scalable 5GC.

Commonly, proactive methods employ an offline learning
approach, where the model is trained using past data and then
deployed in the Forecasting System. However, telecommu-
nication networks are non-stationary environments, i.e., the
traffic is subject to concept drifts (changes in the statistical
distribution of data over time) as new applications and tech-
nologies are introduced. This leads to the model’s quality
degradation, which becomes less effective as the network
evolves. In contrast, online machine learning models excel
in nonstationary scenarios due to their incremental learning
capability. The Optimizer analyzes the model output and
continuously improves it for each predicted instance. Due
to this characteristic, online models have been widely used
to solve problems in non-stationary scenarios. For example,
a study [3] obtained promising results investigating online
models to scale resources in edge computing environments.

This paper presents an evaluation of online learning models
for the proactive scalability of the AMF function in a 5GC.
The choice of AMF is justified by its central role in user and
session management, which makes it particularly sensitive to
traffic variations. Although the study focuses on this function,
the method employed could be adapted to other 5GC functions
with similar architectural and operational characteristics. The
main contribution of this paper is to take an experimental
approach to compare the performance of different online
learning models in scenarios with non-stationary traffic. The
evaluations follow a method defined in this paper, using real
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data from a telecommunications operator.

The remainder of this paper is organized into four sections.
Section [lI] presents the main work related to the scalability of
the 5GC. Section [[]] details the methodology adopted in this
work, describing the data used, the predictive models used, and
the simulation strategy adopted. Finally, Section presents
and analyzes the results obtained, followed by the conclusions
and future perspectives in Section [V]

II. RELATED WORK

Some studies have investigated machine learning techniques
for proactive SGC scaling. Authors in [4] use deep neural
networks and Long Short-Term Memory (LSTM) models to
predict demand for scaling SGC functions. The task is ap-
proached as a classification problem, subdividing traffic into
load bands, where each band is associated with the number of
AMF instances allowed to support it.

The works [5]] and [2] investigate the use of convolutional
neural networks and Gated Recurrent Unit (GRU), for the
scalability of AMF functions in Kubernetes environments, by
predicting CPU usage. These works simulate the behavior of
AMF through a Web server with HTTP requests. Moreover,
using Kubernetes, authors in [6] investigate the scalability of
the AMF using the Wavenet model. The authors implemented
an open source 5G core, which enabled the analysis of
operational metrics.

Concerning online learning approaches, in [7|], the authors
propose addressing concept drifts by retraining an offline
learning model. They use a method to detect drifts and a
strategy to accelerate the retraining process. Although it offers
a solution to deal with changes in data patterns, retraining
approaches are not well-suited to all types of concept drift
[8]. In the opposite direction, a previous study [9] by the
authors of this paper compared an online learning algorithm
with an offline learning algorithm for scaling AMF instances.
These initial results suggest that online learning can be crucial
for improving predictions in the presence of concept drifts,
particularly when the most significant changes occur.

Although the proactive scaling of 5GC functions is not a
new problem, the application of online learning to address
this issue is still in its early stages. However, a large number
of online learning strategies are available in the literature, and
the question of which methods are most suitable for this task
remains open. This work addresses this gap by evaluating and
comparing multiple online learning models for proactive AMF
scaling in a non-stationary environment, contributing to the
understanding of which strategies are better suited to this task.

III. EVALUATION METHOD

Figure [J] illustrates the employed method. The first step,
described in Section involves processing a real mobile
network traffic dataset, which ensures that the probability
distributions learned by the models are similar to those found
in practice while, at the same time, due to the data structure,
enabling the introduction of concept drifts. The next step (Sec-
tion consists of selecting, training, and evaluating the
online learning models for traffic prediction. Finally, Section
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Fig. 2: Evaluation method used in this work.

[MT-C| describes the construction of a simulator to quantify
the impact of the models’ forecasts on the scalability of the
AMF function through high-level operational indicators. All
experiments, code, and processed data are publicly available
for reproducibility and future researc

A. Dataset and Processing

The data used in the evaluation is derived from the collec-
tion of telecommunication Call Detail Records (CDRs) from
Telecom Italia’s mobile network users in the Milan city region
and its surroundings [[10]. The data was collected between
November 1, 2013, and January 1, 2014@ and has been widely
used in the mobile network literature [7]], [[11], [12]. The area is
organized as a 100x100 square of cells. In each cell, the CDRs
are obtained at 10-minute intervals, containing the timestamp,
cell ID, phone calls, SMS, and Internet activities. These CDRs
were rescaled by a factor known only to the provider to create
a privacy level while maintaining the real traffic distribution.

In this work, following [11]], activity data (SMS, phone calls,
and Internet) were aggregated into a single measure, denoted
Total Activity. Further, following [4], 10% of the Total Activity
is considered to correspond to the Control Activity, indicating
the number of requests sent to the AMF every 10 minutes.
Given the interest in evaluating the models under concept
drifts, we assume that different cells in the region may have
diverse traffic patterns. Hence, the Control Activity was used
to divide the cells into clusters. This way, it is possible to
depict abrupt concept drifts while training a model with one
cluster of data and using data from a statistically different
cluster during testing.

To make the clusters, firstly, a position (x, y) was
assigned to each cell concerning its spatial location. After that,
similar to [[11]], [12], K-means algorithm was applied, dividing
the cells into groups according to their Control Activity and
position. The number of clusters was set to five, following [|12].
Figure E] shows the clusters on the left, and the Cumulative
Distribution Function of Control Activity in each cluster (in
requests per 10 minutes), on the right.

! Available at:
S5g-online-scaling-exp

“Hosted at https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/EGZHFV
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In the grid, it is notable that Cluster 4 primarily covers the
central region of the city, surrounded by Cluster 3. Moreover,
Clusters 0, 1, and 2 display comparable areas, with slightly
similar distributions, more concentrated in lower values. These
findings indicate notable differences in traffic patterns between
Clusters 3 and 4 and the others, whereas Clusters 0, 1, and 2
demonstrate a higher degree of similarity among themselves.
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Fig. 3: Left: Grid of cells subdivided into five clusters. Right: Cumulative
function of Control Activity in each cluster.

B. Control Activity Prediction Models

Fifteen online learning models were evaluated in this work:
Aggregated Mondrian Forests Regressor (AMFR), Adaptive
Random Forest Regressor (ARFR), Bagging Regressor (BGR),
Bayesian Linear Regression (BLR), Exponentially Weighted
Average regressor (EWAR), Hoeffding Adaptive Tree Re-
gressor (HATR), Hard Sampling Regressor (HSR), Hoeffd-
ing Tree Regressor (HTR), K-Nearest Neighbors Regressor
(KNNR), Linear Regression (LR), Online Extra Trees Regres-
sor (OXTR), Passive-Aggressive Regressor (PAR), Stochastic
Gradient Tree Regressor (SGTR), Scikit-learn to River Re-
gressor (SKL2RR), and Streaming Random Patches Regressor
(SRPR).

Each model was trained with the Control Activity data
from November in cluster 0, adopting the warm start strategy.
Therefore, the models begin the evaluation already exposed
to a specific traffic pattern, allowing for the investigation
of their ability to adapt to changes using data from other
clusters. After training, each model was tested using data from
December from clusters 0 to 4. December’s data from Cluster
0 represents a scenario with only slightly different patterns
associated with the end-of-year festivities, and with no concept
drifts concerning the training set. In contrast, December’s data
from cluster 3 is a significant change, due to higher data flow
and seasonal variations, making it a more challenging case.

The models use a window of 20 past instances of activity
values to forecast the next activity. This value was defined
based on the partial autocorrelation analysis applied to the
November data, covering the different clusters. The evaluation
of the models’ performance uses the Mean Absolute Error
(MAE), a measure of the average magnitude of the errors and
is expressed as MAE = 1 3¢ = 1" |y; — §i|. In addition, the
computing costs of the models were analyzed according to:
Inference Time (IT), the mean time required for the model to
make a prediction; Learning Time (LT), the average time the
model takes to update its parameters for each new data sample;

and the size of the model in memory, measured in kilobytes
(KB) at the end of each experiment.

C. Simulation

The final step of the evaluation involves a trace-based
simulation [13]] that assesses the various models for provi-
sioning AMF instances and calculates high-level operational
indicators. The simulator, developed in Python with the Simpy
libraryEI, receives as input a trace containing the actual Control
Activity data and the predicted Control Activity - coming from
the model under evaluation - at each instant in time, with a
sampling interval of 10 minutes (see Section [[II-A).

Models of the Scaling Module, Load Balancer, and AMF
replicas were implemented. During each time interval, each
AMF replica receives a portion of the control traffic from
the Load Balancer, processes the amount supported by its
capacity, and rejects any exceeding requests. Based on the
measurements reported in [4]], the capacity of each AMF
instance is set to 20 requests per second (i.e., 1,200 requests
over 10 minutes).

To minimize the Load Balancer’s influence on scaling
decisions, the traffic distribution follows the round-robin al-
gorithm, with a slight modification when an instance is being
removed. In a 5GC, one should avoid terminating an AMF
instance if there are any UEs associated with it. The behavior
of real UEs was emulated using observations from [[14]], which,
based on data from an American operator, showed that most
UEs remain in service for up to 2 minutes, with only 1%
remaining for more than 16 minutes. Therefore, instances
are removed gradually: in the first 10-minute interval after
the removal decision, the Load Balancer sends traffic to the
instance occupying 5% of its capacity; in the next 10 minutes,
the share is reduced to 1% before complete removal.

The Scaling Module decides, using Equation [I] at each
time interval, the number of instances (Npredicied) Tequired to
meet the predicted demand. The occupancy of the instances
is limited to 80% so that they remain in a region of efficient
operation, avoiding reaching prohibitive response times [[13].

(D

Predicted Control Activity
Npredicted = .

0.8 x Capacity of AMF

Once the Npredicted 18 defined, the Scaling Module adjusts
the number of AMF instances according to the Algorithm [T}
New AMF instances are created within the time interval in
which the prediction is received (since the time to create an
instance is usually less than 10 minutes, in practice). However,
to mitigate the effect of oscillations, instances removal is made
gradually.

Each instance has a “life” indicator that turns the instance
off when the indicator reaches 0. At each time interval, the life
of all instances is reduced, and three conditions are evaluated.
The first case occurs when the number of current AMF
instances (Totalipgances) 1S lower than the required number
(Npredicted)- In this case, the life of all instances is increased,
and new instances are created to meet the demand. When

3https://simpy.readthedocs.io/en/latest/
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Algorithm 1: Active instance management algorithm

Input : Npredictea: Predicted number of required instances;
Totaljpsances: Total number of active instances;
Lifeinstance (¢): Current lifetime of instance 4;
Output: Updated states and Lifeingance (4);

1 if Totaliysances > 1 then

2 \ Decrease the lifetime of all instances;

3 end

4 if Totalinstances < M)redi(:ted then

5 Increase the lifetime of all instances;

6 Increase the number of instances;

7 else if Totalinsiances == Npredictezl then

8 Increase the lifetime of all instances;

9 else if Totalinsiances > Npredic/ed then

10 Increase the lifetime of the first (Totalinstances —
instances;

1 foreach instance(i) do

predicled)

12 if Lifeinsmm‘e (’L) == 0 then
13 | Shut down instance i
14 end

15 end

Totalinstances and Npredicted) are equal, all instances have their
lives restored so that they remain active. In the third case, only
some instances have their lives restored. The last loop marks
the instance for shutdown. Only in this case will the Load
Balancer gradually act to reduce traffic to that instance.

The performance of the models in simulations was evaluated
using three metrics: Full Occupancy Count (FOC), measures
the number of events in which requests exceeded the maximum
capacity of the AMF instances; Number of Lost Requests
(NLR), the total number of requests not served throughout
the simulation; and Difference between Ideal and Predicted
AMF Instances (DIPI), which computes the error between the
appropriate number of AMF instances to handle the current
demand and the Npredicted Value, with negative values indicating
undersizing and positive values indicating oversizing.

IV. RESULTS

This section evaluates the models from three complementary
perspectives: forecasting quality, computing efficiency (Sec-
tion [[V-A), and high-level operational performance (Section
[[V-B). Due to space limitations, we present results only for
the five models with the best average MAE performance. The
complete data, including the evaluation of all tested models,
is available at our public repository on GitHub ﬂ

A. Forecasting and Computing efficiency

Table [I] presents the MAE for the five best-performing
models in each cluster. Among them, BLR obtained the
best overall performance, with an average MAE of 284.04,
followed by the EWAR and SRPR models. These models
demonstrated consistent behavior across clusters, especially
in clusters O to 2. However, in scenarios with severe concept
drift, a significant increase in errors is observed for all models,
the most critical case being that of KNNR, which exceeded a
MAE of 1200 in cluster 4.

Table presents the average IT and LT for the models
in Clusters 0 and 4 and the average across all clusters. The

4https://github.com/lasseufpa/5g-online-scaling-exp

TABLE I: MAE values in each cluster for the top-5 models.

Model Co C1 C2 C3 C4 Mean
BLR 129.39 142.45 148.21 425.98 574.17 284.04
EWAR 178.11 194.01 205.16 | 625.11 888.44 418.17
SRPR 218.68 24598 | 255.10 | 732.09 1076.15 | 505.60
SKL2RR | 205.04 | 232.08 | 262.99 | 760.83 1096.74 | 511.54
KNNR 263.39 | 293.09 | 304.94 | 969.41 1250.03 | 616.17

BLR model was the most efficient in IT with only 0.0063 ms,
representing the most responsive model. Following, EWAR
and SKL2RR showed the better the LT aspects, less than 0.25
ms, making them the lightest models. In contrast, the SRPR
model presented a longer LT, around 13 milliseconds. This
result reveals that although the model has a greater capacity
to adapt to varied scenarios, it comes with a high computing
cost. On the other hand, its IT is quite competitive compared
to other models, being around 0.0838 ms.

TABLE II: IT and LT (in milliseconds) for the top-5 models in Clusters 0, 4,
and their average.

Model Metric Cluster 0 (ms) Cluster 4 (ms) Mean (ms)
BLR 1T 0.0063 0.0063 0.0063
LT 0.5164 0.5200 0.5182
EWAR 1T 0.0233 0.024 0.0236
LT 0.1419 0.1383 0.1408
SRPR 1T 0.0830 0.0845 0.0838
LT 13.0987 13.2574 13.1781
SKL2RR IT 0.1092 0.1082 0.1087
LT 0.2419 0.2400 0.2409
KNNR 1T 1.5907 1.5655 1.5781
LT 2.3475 22323 2.2899

Excepting SRPR, the KNNR and SKL2RR models pre-
sented the highest IT and LT among the models. The perfor-
mance of KNNR, in particular, is due to the way it operates,
performing several distance calculations of the tested instance
to the multiple past data. This approach implies high compu-
tational complexity, especially in continuous data streams.

Regarding the final model size, as shown in Table the
EWAR and SKL2RR models remained extremely compact,
using approximately 12.96 KB and 4.73 KB each, while SRPR
occupied, on average, about 851 KB, which is more than
170 times larger than SKL2RR. Thus, one can point out that
BLR maintains a balance between performance and computing
costs. With a very low IT (0.0063 ms), an LT of less than 1
ms, and a fixed size of 57.41 KB, the model presents a good
tradeoff for applications that require accuracy and stability
without compromising computational resources.

TABLE III: Model size (in KB) for the top-5 models in Clusters 0 to 4 and
their average.

Model Co Cl1 C2 C3 C4 Mean
BLR 57.41 57.41 57.41 57.41 57.41 57.41
EWAR 12.96 12.96 12.96 12.96 12.96 12.96
SRPR 909.77 | 800.56 | 932.59 | 914.28 | 698.22 | 851.08
SKL2RR 4.73 4.73 4.73 4.73 4.73 4.73
KNNR 17.01 17.01 17.01 17.01 17.01 17.01

B. Simulation Results

Table [TV]presents each model’s NLR and FOC events across
all clusters. The table shows that BLR, EWAR, and SRPR,
the less error-prone models, are also efficient according to the
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high-level operational indicators. The BLR model obtained a
reduced number of FOC events and relatively few NLR in
total compared to others, especially in cases where the concept
drift is more prominent. The KNNR model, which presented
the worst average performance in terms of MAE, also suffered
the most in terms of high-level indicators. This model recorded
more than 100,000 NLR in cluster 4 and the highest number
of FOC events in almost all clusters.

TABLE IV: NLR and FOC events for each model in all clusters.

Model Metric Co Cl1 C2 C3 C4
BLR NLR 1251 24 0 28584 43308
FOC 2 1 0 2 7
EWAR NLR 1251 24 0 31541 45758
FOC 2 I 0 3 9
SRPR NLR 1251 24 2886 28584 42728
FOC 2 I I 2 6
SKL2RR NLR 1251 24 2886 | 31419 95342
FOC 2 I 1 4 29
KNNR NLR 2018 24 2886 | 70677 105032
FOC 3 I 1 7 24

It is worth noting that the SKLL.2RR model, however, demon-
strated similar performance to SRPR in error metrics and
presented a significantly higher number of total occupancy
events in Cluster 4, 29 events in total. This result is related
to the model’s tendency to project load growth linearly, even
in the face of peaks, which contributes to the recurring
underestimation of demand. This feature stands out even more
when comparing the SRPR model with the BLR model, so
that, despite being less precise on average, it was able to
anticipate the system’s needs more effectively, managing to
obtain 580 fewer NLR than the BLR model.

Table [Y] details the DIPI distribution in Cluster 4, revealing
interesting patterns. In general, all models choose the correct
number of AMF instances (DIPI = 0) most of the time.
However, as the MAE increases, the dispersion of DIPI also
increases. Thus, whereas the BLR, EWAR, and SRPR models
maintain most of their errors close to zero, indicating more
balanced predictions even in adverse scenarios, KNNR has a
significant amount of moderate negative errors (DIPI = -1 to
-2) in addition to a non-negligible amount of overestimates
(DIPI > 0), which reinforces its unstable behavior.

TABLE V: DIPI distribution for each model in Cluster 4.

Model\DIPI | 4 | -3 | -2 -1 [} 1 2 3] 4
BLR 1 0 1 99 3970 71 0 1 0
EWAR 1 0 2 132 | 3870 137 1 0] 0
SRPR 1 0 1 216 | 3777 147 0 0 1
SKL2RR 1 1 1 225 3763 152 0 0] 0
KNNR 2 0 7 154 | 3737 192 | 49 | 2 | O

V. CONCLUSION

This work evaluated the use of different online learning
techniques for proactive scaling of 5G core network functions
in the presence of concept drift. A trace-based simulator was
built and fed with real user activity data to compare the behav-
ior of an online prediction model against an offfine model when
faced with changes in traffic patterns. The results demonstrated
that evaluating the performance of models exclusively based
on the MAE is not enough to ensure an appropriate choice

in real operational scenarios. For example, the SRPR model
presented a MAE superior to the SKL2RR model, but obtained
superior performance in scenarios with significant variations
in traffic patterns. In these scenarios, reacting quickly and
anticipating abrupt changes are essential to avoid losses.

As future work, we plan to implement a proactive scal-
ability system and experiment realistic scenarios using the
open source OpenAirInterfaceE]SGC software, evaluating how
online learning models perform.
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