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Abstract— Detecting concealed targets under foliage remains a
significant challenge for wavelength-resolution synthetic aperture
radar (SAR) systems. This paper proposes the usage of the
bivariate Gamma distribution as a clutter model, shown to be a
well-fitted distribution for intensity SAR difference images, on an
noniterative Change Detection (CD) algorithm based on Bayes’
Theorem. The results were compared by using ROC curves and
a probability of detection of 98.94% at false alarm ratio of 1 per
kilometer squared was achieved, outperforming previously used
distributions in the literature.
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I. INTRODUCTION

Detecting concealed targets beneath vegetation is a per-
sistent challenge for conventional imaging systems. Optical
sensors, in particular, are highly susceptible to weather con-
ditions. Synthetic Aperture Radar (SAR) systems mitigate the
impact of weather on image formation. However, in traditional
microwave SAR systems, foliage still interacts with the radar
signal, making concealed-target detection difficult [1].

To address this issue, wavelength-resolution SAR systems
operate at low frequencies, ensuring that the dominant scat-
terers correspond to the transmitted signal’s wavelength, i.e.,
small scatterers will not add predominant interference on the
reflected signal, thus penetrating vegetation and being able
to detect targets under foliage [2]. Additionally, these systems
are not significantly affected by the speckle noise phenomenon
[3].

Due to the electromagnetic nature associated with SAR
image formation, interpreting information in SAR images
tends to be challenging for human analysts [4]. Because of
this, target detection is usually done using automatic detection
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algorithms [4]. One category of algorithms often used for this
task is change detection algorithms, which check for variations
between two or more images [5], [6].

Considering the statistical behavior of SAR images, Change
Detection (CD) methods are typically developed using statis-
tical approaches. Some studies employ the Likelihood Ratio
Test (LRT) [7], which evaluates the likelihood of the null
hypothesis H0, stating that the region under test consists of
clutter, against the alternative hypothesis H1, indicating the
presence of a target. Other studies adopt an approach based on
Bayes’ Theorem, in an iterative and noniterative manner [6],
[8], to perform detection by comparing the expected value of a
pixel under the clutter model with the empirical value observed
in the image.

Since clutter statistics can be modeled as following a
known distribution, the performance of the CD method can
be improved by identifying a distribution that more accurately
represents the clutter behavior in these type of images. Addi-
tionally, by processing the images, their statistical properties
change, making it possible to describe clutter behavior using
different distributions [9].

In [6], it was shown that the Bivariate Rayleigh distribution
can be used to model the clutter in incoherent wavelength-
resolution SAR images, particularly in regions of interest for
detection. Additionally, studies have demonstrated that the
Bivariate Gamma distribution provides a good fit for intensity
wavelength-resolution SAR difference images [9].

Considering that the Bayesian CD method developed by
Alves et al. demonstrated superior performance compared to
other approaches in the literature [8], and that it relies on an
underlying clutter model, this paper focuses on applying the
statistical model proposed in [9] within the CD framework of
[8]. We adopt the non-iterative version of the CD method due
to its lower computational complexity.

The remainder of this paper is organized as follows. Section
II describes the characteristics of wavelength-resolution SAR
images and the dataset used in the performance tests. Section
III presents the change detection method used in this paper.
Section IV demonstrates the results obtained for the change
detection method with the currently studied models for the
clutter-plus-noise in the literature and the tested model. Section
V discusses the results obtained and the metric algorithm for
validating detection and false alarms. Finally, section VI brings
concluding remarks of the study.
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II. WAVELENGTH-RESOLUTION SAR IMAGES

Traditionally SAR systems uses microwave wavelengths to
image the scenario [1]. This choice of frequency impacts
directly the penetrability of the signal. In this sense, traditional
SAR systems are not well suited for Foliage Penetration
(FOPEN) applications, since smaller wavelengths suffers from
back-scattering from small objects, thus leaves impacting
substantially the reflected signal [1].

In the wavelength-resolution regime the spatial resolution
of the SAR system is comparable to the wavelength of the
transmitted signal, i.e., the distance between two distinguish-
able objects is in the order of the wavelength of the transmitted
signal [1]. To emphasize the detection of larger targets, signals
with longer wavelengths are used, i.e., signals with frequencies
in the order of MHz.

This characteristic leads also to a minimization of speckle
noise, since one resolution cell has at most one scatterer [3].
Also, due to the temporal characteristics of large targets, the
images exhibit temporal stability, being a good candidate for
CD [3].

Illustrating the concept of a wavelength-resolution system,
the CARABAS-II is a Very High Frequency (VHF) Ultra-
wideband (UWB) SAR system developed by the Swedish
Defense Research Agency (FOI). Mounted on a Sabreliner
aircraft, the system uses radio waves emitted from two phased
wide-band dipoles with frequencies ranging from 20 to 90
MHz to create scene imagery [10]. The system features a cell
resolution of 1× 1 (one pixel per square meter) and a system
resolution of approximately 2.5 × 2.5 (minimum detectable
object size).

One of the core applications of the VHF SAR systems is
FOPEN, in 2002 it was developed a flight campaign in Visdel,
Sweden, which provided a dataset containing 24 images, each
of them covering an area of 3 km × 2 km, containing 25
vehicles deployed on the forest that was imaged [5]. The
images are divided in four deployments, each deployment
containing six passes with three groups of two repeated flight
headings. Figure 1 shows an example of image from the
dataset, which can be found in [11].

III. CHANGE DETECTION METHOD

The CD method presented in this work employs Bayes’
Theorem to compute the probability of pixel-level changes [6].
For each pixel, we evaluate the posterior probability P (s ≡
sT | zs, zr) of containing a target change (s ≡ sT ) given
surveillance (zs) and reference (zr) image values as

P (s ≡ sT |zs, zr) =
P (zs|s ≡ sT , zr)P (s ≡ sT |zr)

P (zs|zr)
. (1)

Applying the Bayes Theorem and the considerations made
in [6], we achieve the equation that relates the probability of
a pixel containing a target with the empirical values and the
theoretical expected clutter values, defined as

P (s ≡ sT | zs, zr) = max

(
0, 1− P (zs, zr | s ̸≡ sT )

P (zs, zr)

)
, (2)

Targets

Fig. 1: An example image acquired during Mission 2, Pass
3 of the CARABAS-II campaign, with targets highlighted in
red.

where P (zs, zr | s ̸≡ sT ) represents the clutter-conditional
probability and P (zs, zr) denotes the total empirical prob-
ability. The P (zs, zr | s ̸≡ sT ) derives from a bivariate
distribution Probability Density Function (PDF), while the
P (zs, zr) term is estimated through histogram analysis of
empirical pixel value co-occurrences.

It is expected that the histogram constructed from two
images containing only clutter will closely match the shape
of the theoretical distribution PDF. The addition of targets
to the images results in higher observed values, which are
not predicted by the PDF, leading to a mismatch between
the histogram and the theoretical model. This discrepancy
indicates a high probability of change obtained by (2).

Based on (2), we can describe the change detection method
considered in this work, which consists, respectively, of obtain-
ing the empirical histogram, calculating (2), detection based
on a threshold, and a stage of morphological operations to
exclude detections of objects with dimensions that do not fit
the application. This method is represented in the simplified
block diagram presented in Figure 2.

Histogram
formation
Parameter
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Conditional
probability
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Surveillance Reference

Morphological 
Operations

Results

Fig. 2: Block diagram for noniterative algorithm, adapted from
[6].

There are established models for the clutter-plus noise for
wavelength-resolution SAR imagery, for example bivariate
complex Normal distribution for complex images [7], bivariate
Rayleigh distribution for magnitude images [12], bivariate
Normal distribution for difference images [8] and bivariate
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Gamma distribution for intensity difference images [9]. Based
on the observed results, this work will evaluate the bivariate
Normal, Rayleigh and Gamma distribution models.

A. Implementation Aspects

As the bivariate Gamma distribution is established as a
model for clutter-plus-noise in intensity difference images, it
is required to create this type of image from the combination
of pairs, by subtracting two base images and squaring it [9].
For comparison, we used the same combinations provided in
[9].

Knowing that large structures that also can reflect the
transmitted signal are stable in time, we focus the analysis
on appearing targets in the zs, occurring only when zs ≥ zr,
and, to avoid small value fluctuations to be considered as valid
cells to test, we add a guard value τ to test the cell only
when zs >= zr + τ , the same constraints are made in [8],
[6], [12], [13]. This reduces computational effort and focuses
the analysis on the distribution tail, where the targets are most
likely localized, and the histogram matches the theoretical PDF
more. For a fair comparison, we used the same values provided
by literature τ ∈ {0.2, 0.3, 0.4}.

To calculate the probability P (zs, zr|s ̸= sT ), we first need
to estimate the shape k and scale θ parameters for the zs and
zr images from the CD pair. For the parameter estimation, the
Maximum Likelihood Estimator (MLE) was employed.

Subsequently, the association parameter η between the im-
age pair can be calculated by

η =


ρ

√
ks
kr

if k1 ≥ k2

ρ

√
kr
ks

if k1 < k2

, (3)

where ρ is the Pearson’s product-moment correlation coeffi-
cient.

Based on this setup, the bivariate Gamma PDF can be
computed to retrieve the likelihood of a pixel being clutter,
given by

f(zs, zr) =
1

Γ(kr)Γ(ks − kr)θsθr(1− η)η(kr−1)/2

×
(
zs
θs

)ks−kr
(
zs
θs

zr
θr

)(kr−1)/2

× exp

[
− 1

1− η

(
zs
θs

+
zr
θr

)]
×
∫ 1

0

(1− t)(kr−1)/2t(ks−kr−1)

× exp

[
η

1− η

(
zs
θs

)
t

]
× Ikr−1

[
2

1− η

√
η

(
zs
θs

zr
θr

)
(1− t)

]
dt,

(4)

where I(·)[·] stands for the modified Bessel function of the
first kind.

It is important to emphasize that the calculation of the
bivariate Gamma PDF has an elevated processing cost due to
the integral calculation with a Bessel function in the integrand.
Therefore, τ plays an important role in reducing the amount
of pixels that will be calculated, making the process quicker.
As a result of the change detection method we are left with
a bi-dimensional probability matrix, with each value in the
matrix representing the likelihood of the corresponding pixel
contains a target.

In order to define a detection, we must compare the value
with a threshold λ. A detection is declared at a pixel if P (s ≡
sT |zs, zr) ≥ λ. To ensure consistency, we adopted values for
λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, same as in [6].

For false alarm minimization, morphological operations are
performed. By using erosion, we are able to eliminate small
detections that did not represent actual targets, since the
target dimensions are greater than the system resolution. The
erosion process was followed by two dilation steps: first, a
dilation using a 3× 3 kernel—the same size as the one used
for erosion—was applied to restore detections larger than 3
meters. Subsequently, a second dilation was performed with a
7× 7 kernel, resulting in detected targets that represent areas
of 10× 10 meters.

To validate correct detections and false alarms, we compared
the centroids of the detected objects with the ground truth
positions from the deployment. A detection is considered
correct if its centroid lies within 10 meters of any ground truth
position, otherwise, it is classified as a false alarm. To ensure
consistency, the literature models were also subjected to the
same validation criteria. Algorithms 1 and 2 illustrates as a
pseudo-code the step by step process for the change detection
process and the detection and false alarm evaluation.

Algorithm 1: Detection process pseudo-code
Data: Interest image a; Reference image b;

Subtraction base image c
1 Create the zs and zr images;
2 zs ← |a− c|2;
3 zr ← |b− c|2;
4 Create a 2D histogram with the values of zs and zr;
5 Estimate ks kr θs θr and η;
6 Create a mask for the pixels where zs ≥ zr + τ ;
7 Create P (zs, zr|s ̸= sT ) with the PDF for the pixels

within the mask;
8 Create P (zs, zr) with the recurrence count for zs and

zr values;
9 Create the target likelihood matrix P ;

10 P ← max(0, 1− P (zs, zr|s ̸= sT )/P (zs, zr));
11 Apply low-pass filter with kernel 3× 3;
12 P ← 0 in the pixels where (a− c) < 0;
13 Create detections matrix D;
14 C ← P > λ;
15 Erode C with kernel 3× 3;
16 Dilate C with kernel 3× 3;
17 Dilate C with kernel 7× 7;

Result: Binary change map C
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Algorithm 2: Detection validation process pseudo-
code

Data: Binary change map C
Data: Ground truth positions pixel list l

1 Identify objects from the connected pixels in C;
2 Find the centroids of each object;
3 Initialize false alarms and detection counters with 0;
4 for each detected centroid do
5 if the centroid position is in a 10 pixel radius of

any ground truth then
6 Increment the detection counter;
7 Delete ground truth position;
8 else
9 Increment false alarm counter;

10 end
11 end
12 Pd ← detection counter divided by 25;
13 FAR← false alarms counter divided by 6;

Result: Probability of detection Pd

Result: False alarm rate FAR
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Fig. 3: ROC Curves comparing Gamma with literature models

IV. RESULTS

This paper evaluates the performance of the proposed CD al-
gorithm by analyzing Receiver Operating Characteristic (ROC)
curves under different clutter models. As a comprehensive
benchmark against other algorithms lies beyond the scope of
this work, the analysis is restricted to variations in clutter
modeling.

Figure 3 presents an ROC curve comparing the best results
obtained for each model. The value τ = 0.2 was selected for
the bivariate Gamma due to its superior performance in the
false alarm rate range of interest. For the bivariate Rayleigh,
τ = 0.4 was used as it provided the best overall result
for that distribution. In the case of the bivariate Normal,
τ = 0 was chosen due to the lower complexity of its PDF
and the good match with the histogram in the center region.
Among all tested τ values, the bivariate Gamma distribution
consistently achieves a higher Probability of Detection (Pd)
than the other distributions under the same False Alarm Rate
(FAR) scenario.

As is shown in Figure 3 an increase in the threshold λ
reduces false alarms, concurrently limiting the detection. The
CD image visual inspection confirms that behavior, Figure 4
shows the detection image for experiments 1 and 18 [9], for
τ = 0.2, λ = 0.1 and λ = 0.3.

TABLE I: Pd performance comparison for different clutter-
plus-noise models at FAR = 0.25/km2 and FAR = 1.00/km2.

Model τ Pd [%]
FAR = 0.25/km2 FAR = 1/km2

Gamma
0.2 97.67 98.94
0.3 97.42 -
0.4 97.40 -

Gaussian 0.0 96.11 98.72
Rayleigh 0.4 93.99 98.58

As τ increases, the maximum FAR decreases, which leads
to a smaller maximum point in the FAR axis for the curves
with greater τ values. Considering this, we selected two
operation points, one for the minimum FAR value between
the maximum of each τ curve, FAR = 0.25/km2, and one for
the standard operation point in the literature, FAR = 1/km2.
Enabling the comparison among all τ values tested in this
study and the standard used in the literature. Table I shows a
comparison of Pd at the two chosen operation points for FAR.
Obtaining the best result for the bivariate Gamma model with
τ = 0.2, with 97.67% and 98.94%, for FAR values of 0.25
and 1 per kilometer squared respectively.

V. DISCUSSION

The bivariate Gamma model outperforms the other clutter
models applied to the CD algorithm discussed in this paper.
However, the model does not entirely capture all clutter
behavior, as indicated by the use of τ , which limits the analysis
to the tail of the distribution, where detection takes place.

The use of τ also reduced the number of tested pixels, di-
rectly impacting computational time. Given that the calculation
of the PDF is computationally expensive, it is crucial to assess
the operational applicability of this approach for time-sensitive
applications. In the case of the Gamma distribution, τ tends to
be highly selective, which helps reduce false alarms but can
also lead to the removal of actual targets. Without applying
τ , however, the system becomes computationally costly and
prone to a large number of false positives due to distribution
mismatch. Therefore, a compromise value of τ = 0.2 was
adopted. For the Rayleigh model, τ = 0.4 was selected, as it
yielded the best detection performance. Finally, for the Normal
distribution, τ = 0 was used both because of its simplicity and
because it resulted in the best performance among the tested
configurations.

As observed in Table I, as the values of τ decrease, Pd

increases for a fixed value of FAR. This suggests that there
is an optimal value of τ at which the maximum Pd can be
achieved. In high FAR scenarios, potentially false alarms link
one or more correctly detected targets. This event shifts the
centroid of the detected object, which may result in a reduction
in the number of detected targets. Also, if a false alarm links
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(a) Experiment 1, λ = 0.1 (b) Experiment 18, λ = 0.1

(c) Experiment 1, λ = 0.3 (d) Experiment 18, λ = 0.3

Fig. 4: Comparison of detection results for experiments 1 and
18 at thresholds λ = 0.1 and λ = 0.3 on clutter model
bivariate Gamma distribution with τ = 0.2.

two objects, that would count as correct detection, and the
centroid remains within a radius of 10 pixels from the ground
truth, the detection would count as one. Figure 5 illustrates
this scenario. With that, a better detection validation method
should be considered.

VI. FINAL REMARKS

Overall, the bivariate Gamma distribution was shown to be
more well-fitted to describe the tail behavior of the clutter,
resulting in a reduction of false alarms when compared to
the previously used in the literature. Reaching highers Pd =
97.67% for FAR = 0.25/km2 and Pd = 98.94% for FAR =
1/km2.

Although it achieved a superior Pd, it should be noticed
that the bivariate Gamma distribution has an elevated compu-
tational cost due to the complexity of his PDF formula, and,
differently from the bivariate Rayleigh distribution, it needs
intensity difference images to serve as input for the method.

For future work, we will implement the iterative version of
the change detection method to analyze the performance of
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Fig. 5: Grouped detection example from experiment 18 using
the Rayleigh model with τ = 0.4.

Pd using the bivariate Gamma distribution as a clutter model.
Additionally, a study on the effects of τ on the ROC curve
is planned to evaluate the optimal point for maximizing the
probability of detection.
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