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Optimal Policies for Reinforcement Learning
Applied to User Scheduling Tabular Environments
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Abstract— User scheduling is a fundamental task in shared
systems where multiple users or processes compete for limited
resources. Its main objective is to allocate these resources effici-
ently while ensuring fairness, high performance, and adherence
to quality of service (QoS) requirements. In this paper, we
explore the use of Reinforcement Learning (RL) methods to
address the user scheduling problem in a well-defined scenario.
Our results show that when the problem is modeled as a fully
observable finite Markov decision process (FMDP), deep reinfor-
cement learning methods exhibit apparent training convergence.
However, when compared to classical approaches such as Value
Iteration, there remains noticeable room for policy improvement
in these methods, making them suitable as baselines for further
implementations.
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I. INTRODUCTION

User scheduling is a fundamental process in shared systems
where multiple users or tasks compete for limited resources.
Its primary goal is to manage resource allocation efficiently,
ensuring fairness, maximizing performance, and meeting qua-
lity of service (QoS) requirements [1]. In contexts such as
wireless communications, user scheduling determines which
users are granted access to system resources at any given time
and frequency based on factors like channel conditions and
priority levels. For that, the Base Station (BS) can consider
observing the context of, for example, User Equipment (UE)
location, buffer occupancy, or channel indicators.

Basic scheduling algorithms like Round Robin distribute
resources equally among all UEs [2], while others use the
resource block and signal to noise ratio information to avoid
accumulating data in the user‘s buffer [3]. However, in 5G
networks, the scheduling process becomes significantly more
dynamic and complex due to the increased number of users,
services, and varying network conditions. This important com-
plexity has driven research into the application of Machine
Learning techniques for user scheduling. Among these, Rein-
forcement Learning (RL) stands out as a promising approach,
offering a flexible and adaptive framework for handling the
intricacies of modern scheduling challenges.

RL is a powerful paradigm within the field of artificial
intelligence that enables machines to learn and make decisions
in dynamic and uncertain environments. It can be applied in
a wide range of topics, such as robotics, telecommunications,
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and Natural Language Processing, where it is used mainly
with deep learning-based (deep RL) methods that are based on
neural network models [4]. However, the principal issue with
those techniques is their potential to obtain optimal policies,
which is affected by the deadly triad [5] that impacts the
convergence capability of such techniques. Related work on
user scheduling using RL [6], [7], [8] compares their proposed
techniques using state-of-the-art baselines. Still, they do not
specify optimal solutions, claiming they are unfeasible in their
highly complex scenario. In the absence of optimal solutions
in highly complex scenarios, an alternative for assessing
these methods’ performance is comparing them with optimal
baselines in scenarios with low complexity before scaling
them for the actual network scenario. This would increase the
confidence that the proposed technique and baselines can reach
an optimal or near-optimal performance in controlled scenarios
before coping with complex ones.

When there are controlled environments, for example, where
the number of actions and states is finite, Finite Markov
Decision Process (FMDP), and the dynamics are perfectly
known, the use of tabular methods can achieve the optimal
policy more efficiently than deep methods [9]. Thus, tabular
methods can guide the creation and modeling of the deep ones,
serving as a baseline in controlled test environments.

This paper presents a comprehensive analysis of the use
of both tabular and approximated RL methods over one well-
defined user scheduling problem, in which the number of states
and actions is finite and its dynamics are fully known. For
the tabular side, there will be evaluated the Value Iteration
(VI), and for the approximated methods, the Deep Q_learning
(DQN) and Proximal Policy Optimization (PPO). The VI was
used for its ability to compute optimal policies, serving as a
baseline for the other methods.

II. ENVIRONMENT DESCRIPTION

Similar to the communication system model adopted in
[10], a downlink single-user massive MIMO system is used
in Vehicle-to-Infrastructure (V2I) environment where it is
assumed that there is a single cell with one BS and U UEs. The
incoming traffic is stored in buffers located at the BS. There is
one buffer per UE, each with the capacity to store B packets.
The UEs and the BS are positioned in a G × G grid-world.
The convention adopted for the UE or BS position in this grid
is P(x, y) with x ∈ {0, 1, ..., G− 1} and y ∈ {0, 1, ..., G− 1}.

In this problem, it is assumed that a single grid position
can be simultaneously occupied by all UEs. The movement
of the UEs follows a uniform distribution over the adjacent
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Fig. 1. Wireless environment with vehicles and signal strength gradients.

grid positions that are within one unit of distance and remain
inside the grid boundaries. Channel quality is highest near
the base station (BS) and degrades with increasing distance.
Additionally, a fixed packet arrival rate is considered for
all UEs at each time step in the environment. The Figure
1 exemplifies the problem formulation. It assumes that the
spectral efficiency associated with the channel of a given user
at time t coincides with the number of packets that can be sent
by this user at time t so the scale of the heatmap corresponds
to the number of packets that can be sent in a position.

Based on this problem specification, the RL environment
representation consists of an observation space given by the
buffer occupancy in the UEs and its position. Based on this
information, the agent located at the BS will provide its action,
which is the UE selected to provide the resources. With that,
the problem’s goal is to minimize the number of lost packets
of the UEs, and the reward maximization sought by the agent
during its learning is given by

R =

Te∑
t=1

−10× Lt, (1)

where Lt is the sum of lost packets of all UEs in a given time
step t.

In this environment, the RL state is an element of the
observation space’s set. At each discrete time step, the system
is in a state s which encodes the positions and buffer levels of
all users. More specifically, for each user i ∈ {1, . . . , U}, the
state records their position (xi, yi) in a two-dimensional grid
and their buffer occupancy bi ∈ {0, . . . , B}, where B is the
maximum buffer size. So, the number of states that compose
this environment is given by

S = ((G2 − 1)× (B + 1))U . (2)

To generate the optimal policy, some RL methods consist
of analyzing all the environment’s dynamics, which can be
understood as the probability of the agent obtaining both some
next state and its rewards given a pair of state and action. It
is formalized with Markov Decision Process given by

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s,At−1 = a},
(3)

where s′ is the next state of some transition, r is the reward,
s is the transition starting state, and a is the action taken.

However, for a controlled environment, the probabilities and
rewards can be associated by the triplet (s′, a, s). Thus, it

gets two expressions that compose the environment dynamics:
p(s′/s, a) and r(s, a, s). Normally, the structures used to store
such dynamics are arrays; however, the larger number of states
and actions can make loading such a kind of environment unfe-
asible. Thus, to allow the use of more complex environments,
it is useful to analyze its sparsity, which can be understood as
the ratio of null elements present in the probability’s set.

To obtain the dynamics of the provided environment, the
central assumption underlying the independence UE move-
ments. This means that the future position of each user is
independent of the movement choices of other users, allowing
the global transition dynamics to be determined as the Carte-
sian product of each user’s individual movement options.

An action a corresponds to scheduling one of the users to
transmit data. The selected user’s buffer is deterministically
reduced by the number of packets that can be transmitted from
their current position. After the action is applied, all users,
including the one just scheduled, stochastically transition to
new positions. Each user can either stay in place or move
to one of the adjacent grid cells (up, down, left, or right),
provided that the move stays within the grid boundaries and
does not place the user at the base station’s location. The
possible new positions for user i are denoted by the set Mi.

Under the independence assumption, each user’s movement
is uniformly random over their respective set of feasible
moves. Therefore, the probability that user i moves to a
specific new position pi ∈Mi is given by:

P (pi | s) =
1

|Mi|
. (4)

Consequently, the joint probability of a specific combination
of movements for all users p = (p1, . . . , pNu

) is the product
of the individual probabilities:

P (p | s) =
Nu∏
i=1

1

|Mi|
. (5)

Once the new positions are determined, each user’s buffer
is updated based on the number of incoming packets at their
new location. If the buffer exceeds its capacity B, the excess
packets are considered lost. Then the reward associated with
a transition from s to s′ is calculated. So, the system then
transitions to a new global state s′ which encodes the updated
positions and buffers of all users. The transition probability
from state s to s′ under action a is equal to the joint probability
of the corresponding combination of user movements.

III. OVERVIEW OF RL ALGORITHMS

This section outlines the algorithms used in the study: Value
Iteration (VI) as a tabular method using lookup tables, and
Deep Q-Network (DQN) and Proximal Policy Optimization
(PPO) as deep learning methods that employ neural networks
and gradient-based updates.

A. Tabular RL

1) Value Iteration: The VI algorithm is a tabular method
guaranteed to find optimal policies, the best actions to choose
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in each state, in environments modeled as FMDPs with fully
known dynamics [9]. Its original formulation is based on
solving the Bellman equation for V (s), as shown in Equation
6, but it can also be adapted to solve the Bellman equation for
the action-value function. This equation captures the idea that
the Q-value of an action in a given state is the expected sum of
the immediate reward and the highest possible future reward,
weighted by the probabilities of transitioning to each next
state and receiving each reward. Here, γ is the discount factor,
which determines how much the future rewards influence the
current state’s value.

V (s) =
∑
s′,r

p(s′, r|s, a)[r + γ × V (s′)] (6)

In the VI algorithm, first, the value function V (s) is set to
zero (or arbitrary values) for all states. Then, in each iteration,
the value of every state is updated by taking the maximum
expected return over all possible actions, considering the
immediate reward and the discounted value of the next state.
This process continues until the value function converges
within a specified threshold θ. Once the optimal value function
is obtained, the optimal policy, π∗(s) is extracted by selecting,
for each state, the action that maximizes the expected return.
Its implementation is given by the Algorithm 1.

Algorithm 1 Value Iteration
1: Input: Environment, threshold θ
2: Initialize V (s)← 0 for all s ∈ S
3: repeat
4: ∆← 0
5: for each state s ∈ S do
6: v ← V (s)
7: V (s) ← maxa∈A

∑
s′,r P (s′, r |

s, a) [r + γV (s′)]
8: ∆← max(∆, |v − V (s)|)
9: end for

10: until ∆ < θ
11: Output: Optimal value function V (s)
12: Derive policy: π∗(s) ← argmaxa∈A

∑
s′,r P (s′, r |

s, a) [r + γV (s′)]

It is important to note that this strategy exhaustively eva-
luates all possible state-action pairs to determine the optimal
policy, which becomes infeasible in environments with conti-
nuous state or action spaces. Even when the state and action
spaces are discrete and limited, the quality of the resulting
policy remains highly dependent on the accuracy of the estima-
ted environment dynamics. Nevertheless, in fully observable
MDPs (FMDPs), the ability to compute optimal policies makes
this approach valuable for modeling and benchmarking other
strategies, serving as a reliable reference or guideline.

B. Deep RL

1) Deep Q-learning: The Deep Q-Network (DQN) algo-
rithm extends Q-learning by using a deep neural network to
approximate the action-value function Q(s, a) [11], making

it feasible to learn in high-dimensional or continuous state
spaces. However, it only allows a discrete space of actions.
At each time step, the agent selects actions via an ϵ-greedy
policy, observes transitions, and stores them in an experience
replay buffer. Learning is performed by sampling mini-batches
of past experiences and minimizing the temporal difference
(TD) error between predicted Q-values and target values. This
allows the agent to learn efficiently from a broader distribution
of data.

DQN addresses key issues associated with the Deadly Triad,
the instability that arises from combining function approxima-
tion, bootstrapping, and off-policy learning [12]. The use of
experience replay mitigates harmful correlations in sequential
data, helping to break the feedback loop between Q-value es-
timates and the data they influence. The target network, which
is updated separately from the main Q-network, stabilizes
bootstrapping by providing a slowly changing target. The loss
function used to train the neural networks is the mean squared
TD error between the predicted Q-values and the target values,
given in Equation 7.

L(θ) = E(s,a,r,s′)

[(
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2
]

(7)
where θ− corresponds to the target network weights, θ is

the prediction network weights, and (s, a, r, s′) is a sample of
the transition stored in the buffer for the experience replay.

2) Proximal Policy Optimization (PPO): Proximal Policy
Optimization (PPO) is a reinforcement learning algorithm
designed to improve the stability of policy gradient methods
by preventing large, destructive policy updates.

The main idea is to optimize a surrogate objective that
ensures the new policy πθ does not change too much from the
old policy πθold . This is done by using the probability ratio:

rt(θ) =
πθ(at|st)
πθold(at|st)

, (8)

where (st, at) are state-action pairs from collected trajecto-
ries. The advantage estimate At measures how good an action
was compared to the expected performance.

Instead of maximizing rt(θ)At directly, PPO uses a clipped
surrogate objective to limit policy changes:

LCLIP(θ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] ,
(9)

where ϵ is a small constant (e.g., 0.2). This clipping prevents
the new policy from moving too far from the old one.

Additionally, PPO includes a value function loss:

LVF(ϕ) = Et

[
(Vϕ(st)−Rt)

2
]
, (10)

to improve the critic, and often an entropy bonus to encou-
rage exploration.

The total PPO loss combines these terms:

L(θ, ϕ) = −LCLIP(θ) + c1L
VF(ϕ)− c2Et[H(πθ(·|st))], (11)
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where c1 and c2 are coefficients, and H denotes policy
entropy. PPO minimizes this combined loss to balance policy
improvement, value estimation, and exploration.

IV. EXPERIMENTS AND RESULTS

In this paper, it is assumed that there is a single cell with one
BS to serve three users. Also, it is adopted: G = 4 and B = 3,
which gives a finite number of states using the Equation 2
equal to 216,000. Since the number of actions also is finite,
the environment can be modeled as a Finite Markov Decision
Process (FMDP). Also, the spectral efficiency allows the UE to
send all its packets close to the BS and decreases the amount
as the UE moves away. The incoming packets are fixed for all
UEs and all grids and are equal to 2 for each time step.

The environment adopted has 216,000 states and 3 actions,
so to store all the transitions, it would be needed over 130
billion array elements to store everything. However, not all
transitions that are possible in the adopted environment are
feasible, which means a presence of a large amount of null
probabilities stored in that array. So, the strategy to avoid this
sparsity problem was to consider only possible transitions,
reducing the number to close to 40 million transitions to help
the tabular RL method to compute its policy efficiently.

The experiments consist of running 3 RL methods descri-
bed previously (VI, PPO, DQN), over the environment, then
analyzing their performance and discussing their convergence.
It was used Stable Baselines 3 [13] to implement the deep RL
methods and a standard implementation of the VI. All methods
used γ equal to 0.9. PPO and DQN were trained over a total of
4 million time steps. Some parameters of the deep RL methods
are present at the Table I; the others were the Stable Baseline
default values.

TABLE I
ALGORITHM CONFIGURATION PARAMETERS

Algorithm Parameters
VI θ equals to 0.0001.

DQN Buffer size equal to 1,000,000
with a batch size of 32 samples.

Learning rate equals to 0.0001.

Target network is updated after
2000 steps.

Topology: one hidden layer
with 64 neurons.

PPO Buffer size equal to 60,000 with a
batch size of 128 samples.

Learning rate equals to 0.0003.

Clip factor equals to 0.2.

c1 and c2 are equal to 0.5
and 0, respectively.

Topology: Both policy network
and value network has one hidden
layer with 64 neurons.

For the Deep Reinforcement Learning (Deep RL) methods,
a comprehensive analysis was conducted to evaluate the trai-

Fig. 2. DQN learning process

ning processes. The corresponding results are depicted in
Figure 2 for the Deep Q-Network (DQN) training and in
Figure 3 for the Proximal Policy Optimization (PPO) training.

Starting with the analysis of the reward curves, it is evident
that the PPO algorithm achieved a stable reward performance
around the 2 million training step mark. In contrast, the DQN
agent demonstrated faster convergence in terms of reward
stabilization, achieving relatively stable reward values after
approximately 1 million training steps.

Regarding the evolution of the loss functions, distinct beha-
viors were observed between the two methods. For PPO, the
loss decreased steadily over time, ultimately approaching a
value close to zero after about 2 million training steps. This
pattern reflects the typical behavior of the clipped surrogate
objective in PPO, where successive policy updates become
smaller and more refined, indicating a well-behaved and stable
optimization process.

On the other hand, the DQN agent exhibited a different
dynamic. The DQN loss function decreased and appeared to
reach a form of convergence after approximately 600 thousand
training steps. However, it is important to note that despite this
early apparent convergence of the loss, the reward continued
to improve well beyond this point, eventually stabilizing at
around 1 million training steps. Furthermore, unlike PPO, the
DQN loss did not approach zero. Some reasons for this beha-
vior are related to characteristics of Q-learning algorithms,
where the presence of function approximation, bootstrapping,
and stochasticity in the environment and replay buffer prevent
the loss from diminishing completely to zero.

After the Value Iteration (VI) computed its policy and the
training of both Deep Reinforcement Learning (Deep RL)
methods — DQN and PPO — was completed, all policies
were evaluated under the same conditions: 2000 test episodes,
each consisting of 100 steps.

The distribution of the mean cumulative rewards obtained
by each method is depicted in Figure 4. From this violin plot,
it is evident that the VI method achieved consistently higher
rewards compared to both DQN and PPO. Although the deep
RL methods demonstrate some degree of convergence after
extensive training, their reward distributions remain lower and
more dispersed compared to the VI solution. Complementing
this observation, Figure 5 illustrates the per-episode difference
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Fig. 3. PPO learning process

between the cumulative rewards obtained by VI and those
obtained by DQN and PPO, respectively, across all 2000
test episodes. It is clear from the plot that VI consistently
outperforms both deep RL methods, with the majority of the
reward differences remaining positive and relatively stable
across episodes.

In this context, an optimal algorithm like Value Iteration
serves as a valuable performance benchmark. By assuming
full knowledge of the environment’s dynamics, VI computes
the best possible policy, offering a theoretical upper bound for
what learning-based methods can achieve. Its minimal need
for parameter tuning also makes it well-suited for establishing
baselines in well-defined environments, enabling meaningful
comparisons and guiding the configuration of more complex
methods before their deployment in real-world scenarios.

V. CONCLUSION

This paper aimed to evaluate the adaptability and effecti-
veness of three RL strategies under different levels of envi-
ronmental uncertainty. Experimental results show that Value
Iteration (VI) consistently outperforms the other methods
across all conditions. Despite its limitations in more complex
scenarios, VI remains useful during early development stages
as a performance baseline. It can guide the tuning of more
scalable methods like deep RL by providing a reference for
optimal policy behavior.

Future work could explore more efficient implementations
of VI for large state-action spaces and investigate how accurate
a model must be for VI to produce near-optimal policies. This
could help define its applicability in settings where only partial
or noisy models are available.
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