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Complexity-Reduced MUSIC Using Bicubic
Interpolation to ISAC in Near-Field Region
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Abstract— Integrated sensing and communication (ISAC) sys-
tems rely on accurate localization algorithms, commonly im-
plemented via computationally demanding methods such as the
multiple signal classification (MUSIC) algorithm. Typically, fine-
grid searches required by MUSIC lead to high computational
complexity, posing practical limitations for real-time implemen-
tations. This paper introduces bicubic interpolation applied to
coarse-grid MUSIC pseudo-spectra to significantly reduce com-
plexity without sacrificing localization accuracy. The search grid
is initially defined over a uniformly spaced Cartesian coordinate
system and subsequently transformed into polar coordinates to
enable accurate steering vector evaluation within the MUSIC
algorithm. This formulation allows for the direct application of
interpolation techniques to the resulting pseudo-spectrum. The
simulation results demonstrate that the proposed interpolation
strategy substantially decreases the computational load while
maintaining competitive precision compared to traditional fine-
grid MUSIC methods. Performance evaluations in terms of root
mean square error (RMSE), computational time and computa-
tional complexity analysis (flops) support the effectiveness and
potential application of the proposed approach in future ISAC
deployments.

I. INTRODUCTION

ISAC, a promising paradigm for future wireless systems
beyond 5G, integrates radar-like sensing with data communi-
cation using shared spectral and hardware resources [1]. Accu-
rate localization is fundamental in ISAC systems for enabling
key functions such as beamforming, resource allocation, and
environment mapping. Although the MUSIC 2D algorithm
offers high resolution and is widely adopted, its dependence
on dense two-dimensional grid searches results in prohibitive
computational costs, particularly for the large-scale antenna
arrays envisioned for 6G networks [2].

Recent research offers strategies to reduce this complexity
while maintaining localization accuracy. [3] proposed a near-
field localization approach using an electric field model, de-
riving closed-form estimators with low-overhead maximum-
likelihood refinement. [4] introduced a sparse estimation
framework with the sparse iterative covariance-based estima-
tion (SPICE) algorithm in an exact near-field model, showing
robustness with limited snapshots. [5] combined focusing
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and alternating oblique projection to improve coherent source
resolution and mitigate coherence errors. [6] also developed
hybrid sensing architectures with reconfigurable intelligent
surfaces for unified near- and far-field treatment through
adaptive grid searches. Furthermore, [7] applied interpolation
and denoising on coprime coarrays for gridless, parameter-free
high-resolution direction-of-arrival (DOA) estimation.

To further improve computational efficiency, zoom-in MU-
SIC (reduced-dimension MUSIC) [8] was introduced. This
method reformulates the joint estimation problem by project-
ing the received signal onto a lower-dimensional subspace,
enabling a single one-dimensional spectral search. Despite its
simplicity, zoom-in MUSIC maintains high-resolution capabil-
ity and offers a compelling alternative in resource-constrained
systems.

Bicubic interpolation [9], [10], widely utilized in image
processing, emerges as an attractive solution to refine coarse-
grid pseudo-spectra into high-resolution outputs with minimal
computational overhead. However, its direct application is
hindered because the MUSIC pseudo-spectrum in radar-like
ISAC systems is typically computed in polar coordinates,
where interpolation becomes non-trivial.

This paper proposes a practical and computationally effi-
cient approach: adopting a Cartesian search grid for coarse
MUSIC estimation enables the direct application of bicubic
interpolation. Refining the coarse pseudo-spectrum through
bicubic methods significantly reduces computational complex-
ity while preserving sub-meter localization accuracy under
practical signal-to-noise ratios, making it highly suitable for
real-time ISAC scenarios.

The remainder of this paper is organized as follows: Sec-
tion II describes the system model and the proposed inter-
polation procedure. Section III presents simulation results and
performance evaluations. Finally, conclusions and perspectives
are drawn in Section IV.

II. SYSTEM MODEL

Consider an ISAC system where a base station (BS) (or
an equivalent transmission point) emits a signal primarily
intended for communication, for example, a Quadrature Am-
plitude Modulation (QAM) waveform. This communication
signal, upon reflection from a static user/target, is also lever-
aged for sensing. The system comprises a uniform linear array
(ULA) with M = 2N + 1 sensor elements separated by λ/4
wavelength spacing [4], [8], [11], operating at frequency fc.
The sensing objective is to localize a near-field users/targets
positioned within a two-dimensional (2D) region. The pa-
rameters (rk, θk) denote the direction-of-arrival (DOA) and



XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

distance of the k-th source related to the center of the array.
This localization of the fixed or low mobility target/user is
performed by processing L discrete time snapshots of the
received signal. The signal captured by the m-th sensor at time
instant t, where m ranges from −N to N and t = 1, . . . , L,
is expressed as

ym(t) =

K∑
k=1

sk(t)e
j 2π

λ (d(k)
m −d

(k)
0 ) + nm(t), (1)

where the quantity dm =
√
(xk − xm)2 + y2k represents the

distance between the k-th source located at position (xk, yk)
and the m-th sensor at lateral displacement xm = md, while
d0 =

√
x2
k + y2k is the distance from the same source to

the reference sensor located at the origin (i.e., for m = 0).
Here, sk(t) denotes the signal from the k-th source, and nm(t)
denotes the additive Gaussian white noise at the m-th sensor
with variance σ2 and zero mean. Therefore, the full array of
the received signal is expressed as:

y(t) = As(t) + n(t) (2)

where y(t) = [y−N (t), . . . , y0(t), . . . , yN (t)]T ,
s(t) = [s1(t), . . . , sK(t)]T , n(t) =
[n−N (t), . . . , n0(t), · · · , nN (t)]T . In addition, the
matrix A is the direction matrix defined as A =
[a(x1, y1), · · · , a(xK , yK)], with the steering vector
for the k-th source given by

a(xk, yk) =
[
ej

2π
λ (d

(k)
−N−d

(k)
0 ), · · · , ej 2π

λ (d
(k)
N −d

(k)
0 )

]T
. (3)

A. Multiple Signal Classification - MUSIC 2D

The 2D MUSIC algorithm (Alg. 1) [12], [13] is a high-
resolution technique, less complex than many alternatives, for
estimating incident signal direction (x, y), taking as input
parameters the number of sensors in the array (N ), the received
signal Y, and the grid - G(x, y).

The algorithm’s computational complexity is dictated by its
search grid resolution, which defines the size of a conceptual
dictionary of candidate steering vectors to be tested. For a
fine 80×80 grid, this dictionary has dimensions of M×(80×80),
while a coarse 35×35 grid reduces its size to M×(35×35). This
substantial reduction in the search dictionary is the key to
lowering the computational load, thus creating a fundamental
trade-off between localization accuracy and processing effi-
ciency. The MUSIC 2D steps are detailed next.

Bicubic interpolation, a two-dimensional technique widely
used in image processing [14], [15], is employed here to
refine the MUSIC pseudo-spectrum. When Pcoarse(x, y) is
evaluated on a coarse grid to reduce complexity, the true peak
may lie between the sampled points. A continuous surface,
Pinterp(x

′, y′), is estimated, from which the peak location is
identified:

Pinterp(x
′, y′) = Interpbicubic

[
Pcoarse(x, y)

]
,

(x̂, ŷ) = argmax
x′,y′

Pinterp(x
′, y′). (4)

Algorithm 1: MUSIC 2D Algorithm
Input: M,K,Y, G(x, y) - Search grid points

1 Steps:
2 Compute the sample covariance matrix R
3 R← 1

LYYH

4 Perform eigenvalue decomposition of R
5 (U,Λ)← eig(R)
6 Construct the noise subspace Un

7 Un ← eigenvectors corresponding to the smallest
(M −K) eigenvalues

8 foreach (x, y) ∈ G do
9 Compute the range rm from each array element m

to the point (x, y)
10 dm ←

√
(x− xm)2 + y2

11 Construct the steering vector a(x, y)
12 a(x, y)← [ej

2π
λ (d−N−d0), . . . , ej

2π
λ (dN−d0)]T

13 Evaluate the MUSIC pseudo-spectrum PMUSIC(x, y)
14 PMUSIC(x, y)← 1

aH(x,y)UnUH
n a(x,y)

15 end
16 Output: PMUSIC(x, y)

The interpolated surface is locally modeled as a bicubic
polynomial of the form

Pinterp(x
′, y′) =

3∑
k=0

3∑
l=0

akl x
kyl, (5)

where the coefficients akl are determined from the values of
the 16 nearest samples in a 4×4 neighborhood. This approach
retains the high spatial resolution of a dense grid search while
incurring only the computational cost of the coarse evaluation.

B. Refinement Procedure

The refinement process applies the standard bicubic inter-
polation algorithm, whose full details are described in [14],
[15]. Given a coarse MUSIC pseudo-spectrum, the procedure
for each point on the desired fine grid begins by identifying
a corresponding 4× 4 neighborhood of samples on the coarse
grid. Interpolation weights are then computed based on the
point’s fractional offsets within its coarse-grid cell, typically
using a cubic convolution kernel (e.g., Keys’ kernel). The
refined value is finally computed as a weighted summation of
the 16 neighborhood samples. After populating the fine grid,
the estimated source position (x̂, ŷ) is obtained by identifying
the peak value in the interpolated surface.

By combining a coarse MUSIC evaluation with bicubic
interpolation, the method achieves accurate localization with
significantly reduced computational effort. The initial grid
resolution and the refinement level jointly determine the trade-
off between accuracy and complexity.

III. NUMERICAL RESULTS

In this section, we present numerical examples. The BS
is equipped with a uniform linear array (ULA) of M = 65
antennas/sensors. The carrier frequency is set to fc = 5 GHz,
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resulting in a wavelength of λ = c/fc = (3× 108 m/s)/(5×
109 Hz) = 0.06 m. The inter-element spacing is d = λ/4 =
0.015 m. The total aperture of the array is D = 2Nd = 64×
0.015 m = 0.96 m. To determine the field region, we calculate
the Fraunhofer distance, Rf = 2D2

λ = 2×(0.96 m)2

0.06 m ≈ 30 m. A
single source (K = 1) is considered, located at the Cartesian
coordinate (x, y). Without loss of generality, the search region
is limited to x ∈ [−6, 6] m and y ∈ [1, 15] m. Since the
maximum operational distance in the search region (15 m)
is smaller than the Fraunhofer distance (Rf ≈ 30 m), the
scenario is confirmed to be in the near-field. The number of
snapshots is L = 100.

Fig. 1 depicts a fine grid MUSIC pseudo-spectrum com-
puted on a 80×80 search grid with the user placed at (5, 12) m,
and SNR = 10 dB. The MUSIC algorithm yields an error of
0.20 m with an execution time of 0.0446 s; in this work, we
will use this result as a benchmark.
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Fig. 1: Fine (grid 80× 80) MUSIC pseudo-spectrum with the
user located at K1(5, 12), error = 0.2 m and execution Time
= 0.0446 s.

A. Grid Resolution Selection Strategy

We first fix the fine-grid resolution. Preliminary evaluations
indicate an 80 × 80 grid provides sub-meter accuracy. For
instance, with a source at (5, 12) m and 10 dB SNR, this
grid yields a 0.2 m RMSE (Fig. 1), serving as our benchmark
for coarse-to-fine interpolation methods.

To minimize computation while preserving this 0.2 m
RMSE, we employ a backward selection strategy considering
the RMSE-grid size trade-off. We explore various coarse grid
sizes, refine their pseudo-spectra to 80 × 80 using bicubic
interpolation, and then compare the post-interpolation RMSE
against our benchmark.

Fig. 2 shows the RMSE and execution time as functions of
the coarse grid resolution, while the fine grid remains fixed at
80× 80. From this analysis, we observe that a coarse grid of
35×35—refined via bicubic interpolation—achieves an RMSE
close to the fine-grid reference (i.e., 0.2 m) while reducing the
execution time by a factor of four. The results confirm that
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Fig. 2: RMSE and execution time as functions of coarse grid
resolution. The pseudo-spectrum is refined to a fixed 80× 80
grid using bicubic interpolation.

this configuration provides a near-optimal trade-off between
localization accuracy and computational efficiency, making it
suitable for real-time ISAC applications.

In summary, the fine grid is fixed based on target RMSE,
and the coarse grid is selected based on its ability to preserve
that RMSE after interpolation, while minimizing the associated
computational cost.

B. Performance Illustration of Bicubic Refinement

To illustrate interpolation’s practical effects, Figs. 1, 3, and
4 compare coarse, interpolated, and fine-grid MUSIC pseudo-
spectra for a source at (5, 12) m (SNR = 10 dB, L=100 snap-
shots). The coarse MUSIC (grid 35×35, Fig. 3) yields a 1.19 m
localization error. In contrast, fine-grid MUSIC (grid 80×80,
Fig. 1) achieves a 0.2 m RMSE, albeit at a higher computa-
tional cost. Remarkably, applying bicubic interpolation to the
coarse pseudo-spectrum (Fig. 4) matches this 0.2 m accuracy
with significantly reduced execution time (0.015 s vs. 0.0446 s
for fine MUSIC). This confirms bicubic refinement’s ability
to bridge the resolution gap between coarse and fine grids,
enabling real-time operation with negligible performance loss.
C. Performance Comparison over SNR for MUSIC Schemes

To validate the robustness and scalability of the proposed
bicubic refinement strategy, 200-trial Monte Carlo simulations
were conducted over a wide SNR range, comparing its perfor-
mance against full-grid (fine) MUSIC, coarse-grid MUSIC,
and zoom-in MUSIC [8]. All simulations used previously
described parameters, with a 35×35 coarse grid and an 80×80
fine grid. Zoom-in MUSIC parameters, ensuring comparable
execution times, are in Table I.

Fig. 5. a) presents the RMSE of the estimated source
position versus SNR for four MUSIC-based schemes: (i) Fine
MUSIC (exhaustive 80×80 grid), (ii) Coarse MUSIC (35×35
grid), (iii) Coarse MUSIC with bicubic interpolation to an
80×80 mesh, and (iv) Zoom-in MUSIC (refining peak regions
with a localized 51×51 high-resolution window). As expected,
fine MUSIC consistently achieves the highest accuracy (RMSE
below 0.45 m for SNR ≥ 10 dB) due to dense sampling.
Conversely, coarse MUSIC suffers resolution loss (RMSE >
1 m) from under-sampling. Bicubic interpolation significantly



XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

-6 -4 -2 0 2 4 6

x (m)

2

4

6

8

10

12

14

y
 (

m
)

-18

-16

-14

-12

-10

-8

-6Real Localization

Estimation

3 4 5 6
10

11

12

13

Fig. 3: Coarse (grid 35 × 35) MUSIC pseudo-spectrum with
the user located at K1(5, 12), error = 1.1911 m and execution
time = 0.0134 s.
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Fig. 4: Bicubic interpolation (grid coarse 35× 35 interpolated
to 80× 80) MUSIC pseudo-spectrum with the user located at
K1(5, 12), error = 0.2 m and execution time = 0.015 s.

enhances performance, refining the coarse pseudo-spectrum to
yield RMSE comparable to fine MUSIC for SNRs above 5 dB
(sub-meter precision at a fraction of the cost) by reliably ap-
proximating sub-grid peaks. Zoom-in MUSIC surpasses coarse
MUSIC but is slightly less robust than bicubic interpolation at
low SNR (< 0 dB); its accuracy approaches the interpolated
method for SNR ≥ 5 dB. In summary, bicubic interpolation
offers the best accuracy-complexity trade-off, nearing fine
MUSIC’s precision without its extensive computation, making
it practical for real-time or resource-constrained applications.

Fig. 5. b) displays the average execution time per trial,
which is governed by grid size and search strategy rather than
SNR, hence the flat curves. Fine MUSIC is most demanding
(approx. 0.40 s/trial for its 80× 80 grid). Coarse MUSIC has
the lowest latency (approx. 0.009 s/trial with its 35×35 grid).

The bicubic interpolation adds negligible overhead (0.0005 s)
to the coarse estimate, totaling approx. 0.0095 s (a 5–6%
increase over coarse MUSIC) yet yielding performance com-
parable to fine MUSIC. Zoom-in MUSIC, with its localized
51× 51 refinement, takes about 0.013 s.

Bicubic interpolation emerges as the most computationally
efficient strategy, offering a compelling trade-off between lo-
calization precision and cost, particularly for latency-sensitive
ISAC scenarios. While fine MUSIC provides the highest
accuracy via its exhaustive search, its significant overhead
(nearly 40 times slower than bicubic interpolation) makes it
less suitable for real-time applications. Bicubic interpolation
maintains sub-meter accuracy, especially for SNR ≥ 5 dB,
with substantially reduced runtime. Zoom-in MUSIC is a
compromise, showing slightly higher noise sensitivity at low
SNRs. Therefore, the bicubic refinement method is a practical
choice for ISAC systems, bridging high-resolution estimation
and real-time feasibility by delivering near-optimal precision
with significantly enhanced speed.

TABLE I: Zoom-In MUSIC: Key Parameter Settings

Parameter Symbol Value

Coarse grid points Nc 35
Fine window half-width Wx,Wy ±0.5 m
Local fine step ∆x′,∆y′ 0.02 m
Local grid step nℓ 80
Number of sources K 1
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Fig. 5: a) RMSE of real location and estimates and b) Average
execution time per trial vs. SNR.

D. Computational Complexity Analysis

To provide a quantitative analysis of computational ef-
ficiency, we estimate the average number of floating-point
operations (FLOPs) required by each MUSIC variant. The cal-
culations consider the dominant operations in pseudo-spectrum
evaluation, including steering vector generation, projection
onto the noise subspace, and peak search.

Table II summarizes the average FLOP count per trial
for coarse MUSIC, fine MUSIC, zoom-in MUSIC, and the
proposed bicubic interpolation method. As expected, the fine
MUSIC requires the highest number of operations due to its
exhaustive search over an 80 × 80 grid. Coarse MUSIC has
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TABLE II: Performance and Complexity Summary of 10 dB
MUSIC Variants

Method Grid RMSE (m) Time (s) FLOPs
Coarse MUSIC 35× 35 1.19 0.0090 4.1× 106

Bicubic Interp. 35 → 80 0.21 0.0095 4.3× 106

Zoom-In MUSIC 35/51 0.35 0.0130 6.5× 106

Fine MUSIC 80× 80 0.20 0.0446 9.6× 106

the least complexity, followed closely by the bicubic-refined
version, which introduces negligible overhead thanks to the
efficient interpolation process. The zoom-in strategy exhibits
intermediate complexity, balancing global and local search.

These results validate the proposed method as a compu-
tationally efficient alternative to full-grid MUSIC, achieving
near-optimal accuracy at a fraction of the cost. This charac-
teristic is particularly relevant for real-time systems with strict
latency and resource constraints, such as ISAC applications in
6G.

In MUSIC-based localization, the computational burden
comprises covariance formation[16] O(2M2Nt), eigenvalue
decomposition O

(
9
2M

3
)
, and pseudo-spectrum search. In

the full-grid (fine) MUSIC, evaluating nf × nf points adds
O(M2n2

f ) FLOPs, yielding a total of

O
(
2M2Nt +

9
2M

3 +M2n2
f

)
.

In the coarse MUSIC, reducing to an nc×nc grid lowers this
to

O
(
2M2Nt +

9
2M

3 +M2n2
c

)
.

When coarse MUSIC is followed by bicubic interpolation on
an ni × ni fine mesh, an extra O(n2

i ) term appears, for

O
(
2M2Nt +

9
2M

3 +M2n2
c + n2

i

)
.

In Zoom-In refinement, each of the K local windows of size
nℓ × nℓ incurs O(2M2n2

ℓ) FLOPs, totaling

O
(
KM2n2

ℓ

)
.

These results (summarized in Table II at 10 dB) confirm that
coarse-grid MUSIC with bicubic interpolation adds negligible
overhead to the pure coarse search, while zoom-in MUSIC
incurs a higher but still sub-fine-grid cost.

In summary, the computational complexity analysis con-
firms that the proposed bicubic interpolation scheme provides
an excellent trade-off: it preserves near-optimal localization
accuracy with minimal added cost compared to pure coarse
MUSIC. Fine MUSIC, although accurate, incurs a prohibitive
complexity for real-time operation. Zoom-in MUSIC strikes a
middle ground but still demands substantially more processing
than the interpolated variant. These findings further support the
practical viability of the bicubic method in ISAC scenarios, es-
pecially when low-latency processing and hardware constraints
are critical design factors.

IV. CONCLUSION

This paper introduced a bicubic-interpolation-enhanced
MUSIC framework for ISAC systems. The pseudo-spectrum,
first evaluated on a coarse Cartesian grid, is then interpolated

to fine resolution using standard bicubic kernels. By trans-
forming the coarse Cartesian grid into polar coordinates for
steering-vector computation, the method seamlessly integrates
interpolation without additional coordinate-domain complica-
tions. Extensive Monte Carlo simulations demonstrate that this
approach achieves near-fine-grid localization accuracy (sub-
meter RMSE for SNR≥ 5 dB) while reducing computational
time by up to 75 % compared to exhaustive fine-grid MUSIC.

Future work will address multi-target scenarios and large-
scale antenna arrays, compare the proposed bicubic-enhanced
MUSIC against other promising complexity-reduction tech-
niques, investigate adaptive grid-selection heuristics to further
reduce interpolation overhead, and validate performance under
realistic channel models and hardware constraints.

The simplicity and effectiveness of bicubic refinement make
it a compelling candidate for real-time ISAC deployments.
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