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Analyzing the Performance of Radiolocalization
Algorithms using Data Augmentation

Matheus R. B. Godinho and Daniel C. Cunha

Abstract—This work aims to investigate and compare the
impact of different synthetic data generation techniques on the
performance of fingerprint-based localization models. We con-
ducted experiments on two databases, exploring conditional, non-
conditional, selective, and non-selective synthetic data generation
methods. Three machine learning-based localization models were
utilized, resulting in a total of 90 models being trained—some
using only real data while others incorporated synthetic data. The
results indicate that synthetic data generation can enhance the
performance of machine learning prediction models, particularly
for those based on support vector regression. Additionally, the
conditional and selective generation methods outperformed their
non-conditional and non-selective counterparts.

Keywords— Radiolocalization, fingerprinting, machine learn-
ing, adversarial neural networks, data augmentation.

I. INTRODUCTION

Location-based services for mobile users have become es-
sential, offering numerous benefits and business opportunities
for society. The growing prevalence of mobile and wireless
devices underscores the importance and potential of these
services. Nevertheless, their effectiveness relies heavily on the
accuracy of mobile position estimation and considerations of
energy consumption and implementation costs [1].

The popularity of satellite-based navigation systems, such
as the global positioning system (GPS), is undeniable [2].
These systems can accurately estimate the position of objects
within tens of meters, which meets the requirements of various
location-based services [3]. However, GPS has limitations in
indoor environments and high-density urban areas. In this
context, location solutions based on radio frequency (RF)
signals present viable alternatives, offering a good cost-benefit
ratio [4], [5].

The fingerprinting (FP)-based radio localization algorithm
is a pattern recognition technique that serves as a major
alternative to GPS. Moreover, machine learning (ML) models
have frequently been utilized in their implementation [6],
[7]. The FP-based technique involves two steps: the offline
step and the online step. During the offline step, parameters
of RF signals, such as received signal strength (RSS), are
collected in a wireless communication network (namely Wi-Fi,
Bluetooth, and cellular networks) and associated with specific
positions in a coordinate system. Each record, a combination
of measured signal levels and location coordinates, is called a
reference fingerprint. These reference fingerprints are stored in
a database known as a radio map and are utilized to train ML
models. At the end of the training, the ML models are used in

Matheus R. B. Godinho and Daniel C. Cunha, Centro de Informatica (Cln),
Universidade Federal de Pernambuco (UFPE), Recife-PE, e-mails: [mrbg,
dcunha] @cin.ufpe.br.

the online stage to determine the location of a mobile device
based on the signal levels received at its antenna, commonly
referred to as the target fingerprint.

Although the FP-based localization technique performs
well, collecting reference fingerprints can be costly. ML mo-
dels need a significant amount of data for effective training and
optimization [8]. Additionally, the radio map requires frequent
updates due to changes in the RF signal propagation environ-
ment, particularly in large-scale and long-term deployments
[9]. Finally, while localization systems offer many advantages,
there is also a risk to users’ privacy when their data is accessed,
such as when reference fingerprints are collected through
crowdsourcing [10], [11].

Data augmentation has been applied to solve the problem
of the high cost of collecting training data for FP-based
radiolocation systems that employ ML models [12], [13]. In
other words, including synthetic data generated from actual
data collected allows the training of localization algorithms
to be performed with a smaller amount of collected data,
reducing the costs associated with obtaining measurements.
Additionally, reducing the number of real measurements helps
preserve user data privacy. Given the above, this work aims
to evaluate how different synthetic data generation methods
impact the performance of FP- and ML-based radio localiza-
tion algorithms, considering signal measurement scenarios in
indoor and outdoor environments.

The remainder of this paper is structured as follows: Sec-
tion II introduces a background of the main concepts and
techniques applied. Section III presents the framework and
experimental setup designed and followed in this paper. In
Section IV, the results gathered are shown and discussed.
Finally, Section V summarizes the main conclusions of this
work.

II. BACKGROUND
A. Hierarchical Clustering Algorithm

Hierarchical cluster analysis (HCA) is a clustering algorithm
that groups similar objects from a dataset into subsets called
clusters [14]. The primary objective of HCA is to create
clusters where the elements within each cluster are highly
similar, while elements from different clusters are as dissimilar
as possible.

The algorithm operates in a bottom-up, agglomerative man-
ner. It starts by treating each data point as an individual cluster.
Then, it follows two main steps iteratively. First, it identifies
the pair of clusters that are the most similar based on a selected
distance metric and linkage method. Next, it merges these two
clusters into a single new cluster. This process continues until
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all data points are combined into one overarching cluster. The
progression of this hierarchical merging is visually represented
by a dendrogram, which is a tree-like diagram that illustrates
the nested grouping of clusters and the distances at which each
merge occurs.

The dendrogram is a visualization tool that helps researchers
determine the optimal number of clusters to extract from their
data. By choosing a cutoff point along the vertical axis of
the dendrogram, they can decide at what level of similarity to
separate the data into distinct clusters. In this context, HCA is
used to categorize a set of mapped locations in the test dataset
into distinct zones [15]. These zones provide a framework
for the conditional generation of synthetic data, enabling the
model to effectively capture and replicate location-specific
patterns.

B. Conditional Tabular Generative Adversarial Networks

Generative adversarial networks (GANs) are a well-
established method of two adversarial components for training
generative models [16]. The first one is a generative model G
that learns to capture the underlying data distribution. The
second component is a discriminative model D that estimates
the probability that a given sample originates from the training
data rather than GG. Both G and D can be represented as non-
linear mapping functions, such as multi-layer perceptrons.

To learn a generator distribution p, over data x, the genera-
tor creates a mapping function G(z; 6,) from a prior noise dis-
tribution p,(z) to the data space. The discriminator D(x;64)
outputs a single scalar value representing the probability that
x comes from the training data rather than the generator
distribution p,.

GANs can be expanded to a conditional model, usually
named as conditional tabular GANs (CT-GANSs). This occurs if
the generator and discriminator are conditioned on additional
information y, which can be any auxiliary information, such as
class labels [17]. We can perform the conditioning by provid-
ing y as an additional input layer to the discriminator and the
generator. Throughout the training, we adjust the parameters
for G and D to minimize the expression log(1— D(G(z)) and
log D(x), respectively. This process resembles a two-player
min-max game with a value function V (G, D), such that
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III. FRAMEWORK AND EXPERIMENTAL SETUP

This section will describe the proposed framework and the
experiments carried out in this research.

A. Framework Description

Fig. 1 illustrates the complete RF FP-based localization
system framework using ML and data augmentation. The
initial step of the offline stage involves collecting real data in
the field. RF FP-based localization techniques typically create
radio maps from RSS measurements gathered from multiple
base stations (BSs) or access points (APs) within a designated

coverage area [18]. The FP-based technique collects RSS
measurements at known reference positions throughout the
coverage area to build a radio map. Each reference point is
associated with an RSS vector, representing the signal strength
received from each BS or AP. These RSS-position pairs can
then be used directly to train a regression model that estimates
the user’s position from a given RSS fingerprint.

After collecting the RSS measurements, we perform clean-
ing and pre-processing procedures to adjust the dataset’s
dimensionality for training and generating synthetic data using
a CT-GAN architecture. Before submitting the cleaned and
preprocessed data for CT-GAN training, we apply the HCA
to split the collected data into zones based on the coordinates
of the RSS measurements.

Succeeding the CT-GAN synthetic data generation, we can
then apply a selection filter to the output data. This filter
works by keeping only the generated fingerprints that resemble
the original data the most, based on Euclidean distance. This
selection aims to ensure that the synthetic data used in the
prediction model’s training does not negatively impact its
ability to predict locations accurately [13].

Having introduced the elements of the data augmentation
process, we will outline the types of synthetic data generation
that can be employed. The first type is called indiscriminate
generation. Indiscriminate synthetic data generation produces
synthetic data without considering the zones created before
the CT-GAN’s training. In other words, we effectively use
only block 2 of the data augmentation process (see Fig. 1).

The second type is known as stratified generation. This
method involves creating synthetic data that maintains the
same proportion of samples per zone found in the original
dataset. We believe that generating synthetic data in this way,
aligned with the original distribution, could be beneficial for
training localization models. This approach prevents excessive
synthetic data from being added to poorly represented zones.
Theoretically, if models are trained mostly on synthetic data
from these zones, it could hinder their ability to predict in
those areas correctly. In this case, blocks 1 and 2 are used in
the data augmentation process.

The third type of synthetic data generation is called bal-
anced generation. This approach creates data to ensure that
each zone has equal data added to the original training set. The
aim is to determine whether balancing the number of samples
for each zone and providing equal representation during the
training of the prediction model helps it generalize better and
avoid bias towards zones with a majority of data. This method
is similar to stratified generation, utilizing blocks 1 and 2.

After each type of synthetic data generation mentioned so
far, in block 3, a selective filter may be applied, resulting in an
additional type of generation called selective generation. For
this generation, the number of synthetic samples to be initially
generated was increased by a factor of 20. Then, a selection
method was applied to retain only the best synthetic samples,
reducing them to the desired final quantity.

The resulting radio map will then be used to train the ML
prediction model, which will be able to estimate the mobile
device’s location.
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B. Experimental Setup

In this study, we conducted four types of experiments to
examine the effect of synthetic data generation on the training
of predictive models. To this end, we considered the use of
two RSS measurement datasets.

The first dataset utilized in this research was gathered in
the vicinity of the UFPE [18]. This dataset consists of 6,775
samples that represent cellular network RSS measurements
taken from the university’s external and internal environments.
In this dataset, we selected only the data collected in outdoor
environments, as the indoor data was abundant but limited
to a few locations, which could introduce bias during model
training. Consequently, we created a subset consisting of 2,154
unique outdoor samples. From this subset, we allocated 90%
of the data for training and 10% for testing, ensuring that the
CT-GAN received sufficient data for effective training.

The second dataset was UJIIndoorLoc, shortly called UJI, a
database of Wi-Fi RSS measurements from various buildings
and floors of Universitat Jaume I [19]. This dataset contains
19,937 samples for training and 1,111 samples for testing and
validation collected from 520 APs distributed throughout the
university. We exclusively selected samples from the ground
floor to simplify the prediction problem to two dimensions.
This choice reduced the number of training samples to 4,305
and the test samples to 132. The training set was further
reduced to 1,188 records through random sampling to achieve
a proportion of 90% training data and 10% test data, to match
the proportions of the UFPE dataset. Additionally, it was
necessary to reduce the dimensionality of the dataset to enable
the training and generation of synthetic data using the CT-
GAN. Therefore, the principal component analysis algorithm
was applied to the RSS columns, lowering the dimensionality
from 520 to 12.

After completing the preprocessing pipeline, the HCA al-
gorithm was applied to partition the datasets into spatial
zones, inspired by the approach used by [15]. This clustering
was based solely on the geographic coordinates (latitude and
longitude) from the training data, which were first normalized.
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Framework of the radio frequency (RF) fingerprinting (FP)-based localization techniques using machine learning (ML) and data augmentation.

A dendrogram was created to assist in selecting an appropriate
cutoff point for cluster formation. For the UFPE dataset, a
Euclidean distance threshold of 2 resulted in the creation of
42 zones, which corresponded to the merging of approximately
97.88% of clusters. Following the same methodology, the UJI
dataset was processed, where a distance threshold of 1.27
produced 27 zones that retained a similar percentage of cluster
merges.

Two CT-GAN models were trained, one for each dataset,
over the course of 7,000 epochs using zone information as
a categorical variable to enable conditional data generation.
The quality of the synthetic data was evaluated using three
metrics: Kullback-Leibler divergence, Wasserstein distance,
and Fréchet inception distance [20]. These metrics assess
the similarity between the distributions of real and synthetic
data. Low values for these metrics indicated that the models
successfully generated realistic synthetic data.

After training the CT-GAN models, we conducted experi-
ments on generation and filtering techniques. These strategies
were tested by adding synthetic data to the training sets in three
different proportions: 20%, 40%, and a dataset-specific maxi-
mum based on balanced generation—approximately 54% for
the UJI dataset and 62% for the UFPE dataset. The resulting
datasets were then used to train prediction models, allowing
us to analyze how each generation strategy affected model
accuracy and generalization. Fig. 2 shows examples of each
type of generation method for specific zones within the UFPE
dataset. As expected, balanced generation equalizes sample
counts across zones, while stratified generation preserves the
original distribution, and indiscriminate generation does not
follow any particular pattern regarding zones.

The predictor models utilized in this study—MLP, SVR,
and XGBoost—were trained with hyperparameter optimization
using the Optuna library. This process involved five-fold cross-
validation, with the mean of the negative mean squared error
serving as the objective function. After identifying the optimal
hyperparameters, a total of 90 models were trained: six using
only real data, while the remaining models were trained with
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Fig. 2. Example of each type of generation method for specific zones within the UFPE dataset.

synthetic data generated for each type of experiment. Model
evaluation focused on the distance error in meters, which was
calculated using either the Euclidean distance or the Haversine
formula, depending on the coordinate system of each dataset.

IV. RESULTS

This section investigates the impact of incorporating syn-
thetic data into model training by addressing four key ques-
tions: (a) how models trained with both real and synthetic
data compare to those trained solely on real data; (b) how
different proportions of synthetic data influence performance;
(c) which type of synthetic data generation—indiscriminate,
stratified, or balanced—yields the best outcomes; and (d)
whether applying a selection filter to synthetic samples en-
hances results.

Tab. I presents the mean value € and standard deviation o
of the distance prediction error for each model and dataset,
comparing the baseline experiments, trained solely with real
data, with the best generative ones, trained with real and
synthetic data. Only 12 models had their results presented
due to space constraints. For brevity, the experiments have
been given shortened names. The first letter of each shortened
name indicates the generation type: 'S’ for stratified, I’
for indiscriminate, and B’ for balanced. The second letter
signifies whether the selective filter was applied, with ’S’
indicating it was applied and NS’ indicating it was not. Lastly,
the number represents the percentage of synthetic data in
the resulting training set. The Rank column in Tab. I shows
how each experiment performed compared to the others from
the same dataset and model, ordered by the mean distance
prediction error, measured in meters.

As shown in Tab. I, several configurations utilizing synthetic
data outperformed their respective baselines. This indicates
that performance can improve with careful tuning of the gen-
eration type, the proportion of synthetic data, and the filtering
methods used. When we extend our analysis to all 90 exper-
iments, the proportion of synthetic data demonstrates model-
specific effects. Moderate levels (e.g., 40%) occasionally out-
performed both lower and higher proportions, suggesting that
finding a balance is crucial for enhancing generalization with-
out introducing excessive noise. Furthermore, when comparing
different generation types, balanced and stratified approaches
generally outperformed indiscriminate methods, with balanced
generation achieving the best results in most comparisons.

TABLE I
RESULTS FOR EACH ML MODEL AND DATASET COMPARING THE
BASELINE WITH THE BEST GENERATION EXPERIMENT.

[ Dataset [ Model [ Experiment[ é[m] [ olm] [ Rank
SVR Baseline 122.88| 53.83 13
S-S-62 103.28| 58.91 1
Baseline 95.38 53.00 2
UEPE HMLE 1-5-62 91.75 | 62.13 | 1
Baseline 23.59 18.64 1
XGBoost B-5-62 25.41 | 19.22 | 2
Baseline 39.11 27.31 4
SVR B-5-54 38.50 | 27.85 | 1
Baseline 26.33 24.03 2
UJt MLP I-S-20 24.99 17.59 1
Baseline 14.92 12.06 2
XGBoost B-5-54 14.15 | 10.24 | 1

However, these performance gains were not consistent across
the board, and optimal strategies varied depending on the
context.

Additionally, selective filtering improved model perfor-
mance in roughly 69% of cases, with zone-aware selec-
tion proving particularly beneficial. While both balanced and
stratified approaches consistently benefited from filtering, in-
discriminate generation showed less consistent improvement,
sometimes introducing spatial biases that hampered general-
ization. This highlights the importance of pairing synthetic
generation with spatially informed selection to preserve distri-
butional integrity.

One way to evaluate the effectiveness of localization tech-
niques is by assessing their precision using the cumulative dis-
tribution function (CDF) of the distance prediction error [21].
Fig. 3 illustrates the CDFs of the distance prediction errors for
the localization techniques using SVR and XGBoost, based on
the UFPE and UIJI datasets, respectively. A steeper curve and,
to a lesser extent, a shorter range in the CDF indicate better
precision of the localization system. From this analysis, we can
conclude that the precision of the synthetic-based approaches
is superior to that of the baseline, particularly for the SVR-
based models in the UFPE dataset, but also for the XGBoost-
based models in the UJI dataset, due to a shorter range of
distance errors, even though the slope of the lines is similar.

Overall, synthetic data can enhance model accuracy and
robustness, but its benefits depend heavily on the strategy
used, making it crucial to tailor the generation and selection
processes to each specific application.
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V. CONCLUSIONS

This study investigated the impact of different CT-GAN
synthetic data generation strategies on the effectiveness of a
fingerprint-based localization technique using machine learn-
ing models. Experiments were conducted using a dataset of
outdoor fingerprint samples collected at UFPE and a Wi-
Fi RSS measurement database named the UJI dataset. The
analysis employed three predictive models: multilayer percep-
tron (MLP), support vector regression (SVR), and XGBoost.
Furthermore, location zones defined through hierarchical clus-
tering analysis (HCA) were used as conditioning variables in
the synthetic data generation process.

Four generation strategies were tested: (a) indiscriminate
generation, which ignores zone structure; (b) stratified gen-
eration, which reflects sample density per zone; (c) balanced
generation, which equalizes the number of samples across
zones; and (d) selective generation, where synthetic data
from the previous methods is filtered to retain only the most
realistic samples. The goal was to evaluate how these strategies
and the proportion of synthetic data added affect prediction
accuracy. Model performance was compared across different
scenarios to assess each method’s relative effectiveness and
filtering impact.

The results indicated that synthetic data can enhance model
performance, especially for SVR-based models. Among the
various generation techniques, balanced generation generally
outperformed both stratified and indiscriminate methods. Ad-
ditionally, applying selection filters improved the quality of
the synthetically generated data when using zone-based ap-
proaches. However, filtering data generated indiscriminately
could lead to worse outcomes due to the introduction of spatial
bias. Future research could investigate these techniques with
smaller training datasets or utilize newer model architectures,
such as transformers or convolutional neural networks, to
assess their broader applicability.
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