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GAIA-DRL: A Geoenvironmental Agent for Energy
Optimization in Batteryless IoT Networks with

Ambient Backscatter
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Abstract— This paper proposes GAIA-DRL, a framework that
integrates ambient backscatter communication, geospatial intel-
ligence, and deep reinforcement learning to optimize batteryless
IoT networks. Real environmental data such as NDVI and pasture
coverage are embedded into the agent’s state vector, enabling
adaptive, eco-aware communication control. Using the DDPG
algorithm, GAIA-DRL jointly optimizes throughput, latency, en-
ergy efficiency, and interference under dynamic conditions. Sim-
ulations with real geospatial layers demonstrate improvements
in performance and sustainability. The approach supports low-
cost, low-carbon applications in 6G-ready IoT systems, including
greenhouse gas monitoring, smart agriculture, and sustainable
environmental management.
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I. INTRODUCTION

The acceleration of climate change and its cascading effects
on ecosystems and agriculture demand innovative solutions
for real-time environmental monitoring. Advances in low-
power communication and artificial intelligence have enabled
the development of smart, energy-efficient systems capable of
capturing ecological dynamics with minimal infrastructure.

Wireless Sensor Networks (WSNs) have long supported en-
vironmental monitoring [1], but their dependence on batteries
introduces logistical and ecological limitations for large-scale
or remote deployments. Ambient Backscatter Communication
(AmBC) emerges as a promising alternative, enabling battery-
free communication by harvesting and reflecting ambient radio
frequency signals [2], [3].

To manage dense, dynamic, and energy-constrained net-
works, Deep Reinforcement Learning (DRL) provides a flex-
ible approach. In particular, the Deep Deterministic Policy
Gradient (DDPG) algorithm allows continuous control over
system behavior, supporting fine-grained adjustments in trans-
mission parameters based on real-time feedback [4], [5]. This
is especially relevant in backscatter-based networks, where
minor adjustments in reflectivity or timing can significantly
affect performance under interference or mobility.
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Simultaneously, Geographic Information Systems (GIS) and
remote sensing have become essential tools for tracking land-
use changes, vegetation health, and environmental degradation.
By combining in-situ IoT measurements with satellite-derived
indices such as the Normalized Difference Vegetation Index
(NDVI), researchers can build scalable and geospatially in-
formed monitoring systems [6], [7].

In this work, we propose GAIA-DRL, a novel control
algorithm for batteryless IoT networks. GAIA-DRL integrates
spatial features such as NDVI and pasture coverage directly
into the agent’s state vector, enabling adaptive decision-
making based on territorial and ecological priorities.

By combining AmBC, DRL, and geospatial intelligence,
GAIA-DRL supports scalable, sustainable, and low-cost net-
work architectures for applications in greenhouse gas tracking,
precision agriculture, and smart environmental management.

II. RELATED WORK

The design of intelligent and sustainable IoT networks has
attracted growing research interest, particularly in applications
involving remote sensing, energy efficiency, and environmental
monitoring.

Batteryless IoT and Ambient Backscatter: Ambient
backscatter communication (AmBC) has emerged as a key
enabler of batteryless IoT, allowing ultra-low-power devices
to transmit by reflecting existing RF signals [2]. Early imple-
mentations demonstrated passive communication with mini-
mal energy consumption [8], and recent advances extended
AmBC to long-range protocols like LoRa [3]. The concept of
Battery-Free IoT (BF-IoT) presents a promising alternative for
sustainable deployments in remote areas [9].

Deep Reinforcement Learning in Network Optimization:
DRL has been widely applied to optimize power control,
scheduling, and data routing in wireless systems. Algorithms
such as DDPG and PPO support continuous decision-making
in dynamic environments [4]. In backscatter-based networks,
DRL enables adaptive resource allocation under mobility and
interference constraints [5].

GIS and Remote Sensing in Environmental Monitoring:
Geospatial technologies are central to land-use mapping and
ecosystem assessment. Platforms like Sentinel and CBERS
provide vegetation indices (e.g., NDVI, EVI) that support
pasture analysis, erosion tracking, and urban expansion mon-
itoring [6], [7]. These variables enrich learning models with
spatial context reflecting real environmental dynamics.
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Hybrid IoT-GIS-DRL Approaches: Recent efforts have
explored integrating IoT data, geospatial analysis, and AI. For
instance, [10] used LULC projections for policy design in
ecological corridors. However, few works incorporate satellite-
derived variables directly into the control loop of IoT net-
works.

This paper introduces GAIA-DRL, a unified decision-
making framework that merges AmBC, DRL, and geospatial
data. Unlike prior studies that use spatial data mainly for mon-
itoring, GAIA-DRL embeds environmental indicators such as
NDVI and pasture coverage directly into the agent’s state
vector, enabling real-time, territory-adaptive communication
strategies in dense, batteryless networks.

Inspired by recent approaches that emphasize adaptive
architectures [11], GAIA-DRL advances this vision by in-
corporating geospatial intelligence into the decision logic of
wireless agents, fostering intelligent behavior aligned with
environmental conditions.

III. PROPOSED METHOD

This section describes the core components of the GAIA-
DRL architecture, a novel approach for optimizing batteryless
IoT networks by integrating ambient backscatter communica-
tion, deep reinforcement learning (DRL), and real geospatial
data.

A. System Architecture
The proposed system consists of a dense IoT network

composed of passive nodes spatially distributed across rural
monitoring zones. These batteryless devices communicate
by reflecting ambient RF signals—such as FM, AM, or
TV—through ambient backscatter communication (AmBC).
An intelligent controller based on DRL dynamically adjusts
the reflective behavior of each node in real time to optimize
communication while accounting for ecological constraints.

Figure 1 illustrates the GAIA-DRL architecture. It depicts
an IoT-enabled pasture scenario where cows carry passive
sensors that harvest and reflect ambient RF energy. The agent
receives input from both communication metrics and environ-
mental data—such as vegetation indices and pasture condi-
tion—obtained from remote sensing platforms like CBERS-
4A and Sentinel satellites. These inputs form the agent’s state
vector, enabling environmentally adaptive control policies.

B. State Representation
At each time step t, the agent observes the environment via

a multivariate state vector st:

st = [Rt, Et, Lt, It, Vt]

Where:
• Rt = current throughput (kbps)
• Et = estimated energy efficiency (a.u.)
• Lt = average latency (ms)
• It = interference level (a.u.)
• Vt = geospatial/environmental input (e.g., NDVI or pas-

ture coverage)
The inclusion of Vt enables territory-aware and ecologically

aligned decision-making.

Fig. 1. GAIA-DRL architecture for adaptive control in batteryless IoT
networks using ambient backscatter and geospatial intelligence.

C. Action and Control Mechanism

The agent outputs a continuous-valued action at ∈ [0, 1]
that modulates the logical reflection coefficient of each device.
This controls the effective transmission strength, enabling
dynamic trade-offs between communication performance and
interference.

D. Reward Function

The agent is guided by a scalar reward rt, computed using
a weighted objective function:

rt = α1Et + α2Rt − α3Lt − α4It + α5Vt

Weights α1, ..., α5 balance energy efficiency, throughput,
latency, interference, and environmental context. In our setup:

[α1, α2, α3, α4, α5] = [0.25, 0.25, 0.2, 0.2, 0.1]

E. Learning Framework

We adopt the Deep Deterministic Policy Gradient (DDPG)
algorithm [12], implemented in Python using TensorFlow
and Gym. The agent is trained across multiple episodes in
simulated environments with varying network densities and
geospatial configurations. DDPG is well-suited for this sce-
nario due to its support for continuous action spaces and ability
to operate under non-stationary conditions with partial ob-
servability—characteristics inherent to backscatter-based IoT
networks.
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Key hyperparameters used in training include:
• Learning rate: 10−4 (actor), 10−3 (critic)
• Batch size: 64
• Replay buffer size: 105

• Discount factor γ: 0.99
• Soft update factor τ : 0.001
Training continues until the average reward stabilizes over

a sliding window of 50 episodes.

F. GAIA-DRL Algorithm

Algorithm 1 outlines the full operation of the GAIA-
DRL agent, including interaction with the environment, action
selection, experience storage, and policy updates.

Algorithm 1 GAIA-DRL: DRL-Based Optimization Proce-
dure

1: Initialize actor and critic networks with random weights
2: Initialize target networks and replay buffer
3: for each episode do
4: Reset environment and get initial state s0
5: for each time step t do
6: Select action at = µ(st) +Nt

7: Execute at, observe rt and next state st+1

8: Store (st, at, rt, st+1) in replay buffer
9: Sample mini-batch and update networks via DDPG

10: end for
11: end for
12: Return trained policy µ

IV. EXPERIMENTAL SETUP

To evaluate the performance of the GAIA-DRL algorithm,
we developed an experimental pipeline integrating network
simulation, geospatial data processing, and deep reinforcement
learning.

A. IoT Network Simulation

The wireless network was simulated using OMNeT++, mod-
eling a dense mesh of passive sensor nodes that operate via
ambient backscatter communication. The nodes were deployed
with heterogeneous spacing and subject to terrain irregularities
and obstacles to simulate realistic rural environments. Com-
munication behavior was abstracted using logical reflection
coefficients to emulate batteryless devices without active RF
transmission.

We evaluated four different power levels (2, 5, 10, and 15
mW). For each level, two scenarios were compared:

• Baseline: static configuration with fixed reflection coef-
ficients.

• GAIA-DRL: adaptive control using the DDPG agent.
Performance metrics collected include packet success rate,

latency, interference, and energy efficiency. Each configuration
was simulated over 100 runs to ensure statistical robustness.
The mean and standard deviation of each metric were com-
puted and reported in Section V.

B. Reinforcement Learning Environment

A custom OpenAI Gym environment was implemented in
Python to simulate the interaction between the agent and the
network. At each timestep, the agent receives a normalized
state vector:

st = [Rt, Et, Lt, It, Vt]

The agent selects a continuous-valued action at that modu-
lates the reflection behavior of each node. The environment
returns updated metrics and a scalar reward based on the
objective function defined in Section III.

Multiple network density scenarios and geospatial condi-
tions were simulated to evaluate adaptability.

C. Integration with Geospatial Data

Geospatial layers were integrated using vegetation indices
such as NDVI and pasture coverage maps, sourced from Map-
Biomas (Collection 8) and CBERS-4A satellite imagery. A
preprocessing pipeline in Python (executed in Google Colab)
extracted georeferenced control points and converted raster
data into CSV format for use within the agent’s training
environment.

The resulting environmental variable Vt provided spatial
awareness to the agent, enabling geospatially sensitive policy
learning based on real territorial dynamics.

D. Pasture-Aware Monitoring Scenario

To simulate a relevant use case, we modeled a rural monitor-
ing scenario in the municipality of Lages–SC, southern Brazil.
NDVI data and pasture degradation maps identified zones with
high ecological stress (e.g., overgrazing, low vegetation cover).
The GAIA-DRL agent learned to prioritize these regions
by increasing monitoring frequency and adjusting reflective
behavior accordingly.

All results were visualized using QGIS, generating the-
matic maps that correlate network performance with envi-
ronmental dynamics. All simulation scripts, geospatial layers,
and training notebooks are available in our public repos-
itory: https://github.com/edwardes-galhardo/
GAIA-DRL1, supporting full reproducibility.

V. RESULTS AND DISCUSSION

This section presents the experimental results comparing the
performance of the GAIA-DRL agent with a static baseline
strategy. The evaluation focuses on throughput, latency, energy
efficiency, interference, and spatial behavior of the network
under varying transmission power levels. All metrics were
averaged over 100 runs, and standard deviations are reported
to assess variability.

A. Network Performance Optimization

Table I summarizes the success rate, energy efficiency,
and latency across four power levels. The baseline refers
to a fixed reflection strategy with no adaptivity. GAIA-DRL
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TABLE I
SIMULATED NETWORK METRICS UNDER VARYING POWER LEVELS

(MEAN ± STD)

Power Success Rate (%) Energy Efficiency
(mW) Baseline GAIA-DRL Baseline GAIA-DRL

2 87.1 ± 1.9 94.6 ± 1.4 0.55 ± 0.03 0.68 ± 0.02
5 89.7 ± 1.6 95.7 ± 1.2 0.65 ± 0.02 0.77 ± 0.02

10 92.9 ± 1.2 96.8 ± 1.0 0.75 ± 0.01 0.82 ± 0.01
15 95.2 ± 1.0 97.1 ± 0.9 0.80 ± 0.01 0.85 ± 0.01

Power (mW) Latency (ms)
Baseline GAIA-DRL

2 120 ± 5.4 105 ± 4.7
5 110 ± 4.9 95 ± 4.2

10 100 ± 4.3 85 ± 3.9
15 90 ± 3.8 75 ± 3.6

consistently outperformed the baseline, especially under low-
power settings, improving communication reliability and re-
sponsiveness.

Figure 2 illustrates the gain in success rate across transmis-
sion levels. GAIA-DRL achieves up to 8% higher success in
low-power regimes (2–5 mW) through adaptive tuning of node
reflectivity.

Fig. 2. Success rate vs. power level for baseline and GAIA-DRL.

Figure 3 shows the trade-off between energy efficiency
and latency. GAIA-DRL reduced latency by up to 15% and
increased efficiency by up to 25%, demonstrating its suitability
for low-power, delay-sensitive IoT applications.

Fig. 3. Energy efficiency and latency across transmission levels.

B. Throughput and Interference Trade-Off

Table II presents throughput and interference metrics.
GAIA-DRL consistently delivered higher throughput while
reducing interference across all power levels.

TABLE II
THROUGHPUT AND INTERFERENCE COMPARISON (MEAN ± STD)

Power Throughput (kbps) Interference (a.u.)
(mW) Baseline GAIA-DRL Baseline GAIA-DRL

2 12.3 ± 0.9 16.2 ± 1.0 0.25 ± 0.03 0.20 ± 0.02
5 18.1 ± 1.0 22.4 ± 1.1 0.35 ± 0.03 0.28 ± 0.02
10 24.2 ± 1.1 28.3 ± 1.0 0.50 ± 0.02 0.42 ± 0.02
15 26.6 ± 1.0 29.1 ± 0.9 0.65 ± 0.02 0.58 ± 0.01

C. Spatially Context-Aware Adaptation

D. Spatially Context-Aware Adaptation

By incorporating NDVI and pasture coverage data into the
state vector, the GAIA-DRL agent was able to perceive spatial
variations in vegetation health and land use intensity. This
enabled the system to dynamically adapt its communication
strategy based on ecological conditions observed across the
monitored region.

Figure 4 presents a spatial transmission activity map for the
municipality of Lages–SC. The underlying geospatial layer
combines NDVI values and pasture degradation data from
MapBiomas (Collection 8). In this representation, greener
areas indicate healthy vegetation with minimal intervention
needs, while lighter or yellowish regions correspond to ecolog-
ically stressed zones—such as overgrazed pastures or degraded
land with low NDVI values.

The figure clearly demonstrates how the GAIA-DRL agent
increases the frequency and intensity of transmissions in areas
with poor vegetation conditions, focusing monitoring efforts
where environmental risk is higher. Conversely, in stable areas
with dense vegetation cover, the agent reduces transmission
activity to conserve energy and avoid unnecessary interference.

This adaptive behavior exemplifies the system’s ability to
integrate geospatial intelligence into real-time network con-
trol, offering a sustainable approach to IoT monitoring that
aligns communication decisions with territorial priorities and
environmental vulnerability.

Fig. 4. Spatial distribution of transmission activity in Lages–SC, where zones
with low NDVI and high pasture degradation (lighter areas) receive intensified
monitoring by the GAIA-DRL agent, while stable vegetation zones (darker
green) exhibit reduced transmission activity.

E. Critical Analysis and Limitations

Although results are promising, several limitations must be
addressed. First, the current validation is based on simulations.
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Field tests are required to assess real-world viability under
interference, mobility, and irregular topography. Second, the
current reward function uses fixed weights; future work should
explore dynamic tuning strategies and multi-objective formu-
lations.

Additional concerns include scalability to larger networks
and robustness to outdated or inaccurate geospatial layers.
Moreover, acquiring up-to-date NDVI or land-use data in real
time may be constrained in regions with low satellite coverage
or high cloud presence.

Despite these challenges, the results reinforce the feasibility
and practical value of using DRL in batteryless, geospatially
adaptive IoT networks for sustainable monitoring.

VI. CONCLUSION AND FUTURE WORK

This paper presented GAIA-DRL, a reinforcement learning-
based optimization framework for batteryless IoT networks
operating with ambient backscatter communication. The pro-
posed system integrates deep reinforcement learning (DDPG),
real-time network metrics, and geospatial intelligence (NDVI
and pasture coverage) to enable adaptive, context-aware com-
munication control in dense and energy-constrained environ-
ments.

Simulation results demonstrated that GAIA-DRL improves
success rate, energy efficiency, and latency, while reducing
interference—even under low-power conditions. By embed-
ding geospatial variables into the agent’s state vector, the sys-
tem adapts dynamically to ecological conditions, prioritizing
monitoring in vulnerable or degraded areas. This capability
is particularly relevant for sustainable agriculture, greenhouse
gas tracking, and low-carbon 6G IoT infrastructures.

The integration of GIS and remote sensing expands the
potential of reinforcement learning in real-world deployments,
supporting scalable, cost-effective, and environmentally aware
communication strategies.

Future work will focus on:
• Performing field validation with real AmBC devices and

passive sensors, in collaboration with institutions such as
EPAGRI/CIRAM;

• Developing a dynamic simulation platform with real-time
geospatial data layers;

• Enhancing the reward function via adaptive weight tuning
and multi-objective learning strategies sensitive to sea-
sonal and spatial variations;

• Assessing scalability in larger deployments and improv-
ing robustness to outdated or incomplete environmental
data;

• Exploring real-time NDVI and land-use data acquisition
from alternative sources with higher temporal resolution.

We believe that combining batteryless IoT, artificial in-
telligence, and geospatial analysis offers a promising path
toward resilient and ecologically responsible smart sensing
infrastructures.
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