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Abstract— LiDAR systems generate large point cloud datasets,
posing significant storage and transmission challenges in
resource-constrained environments like IoT networks and drone-
based systems. This study conducts a comparative analysis
of lossless compression algorithms for LiDAR data in LAS
format, evaluating their performance in balancing compression
efficiency, speed, and data integrity. Using real-world airborne
LiDAR datasets from Washington, DC, we test specialized (e.g.,
LASzip) and general-purpose (e.g., 7-Zip, BSC) algorithms.
Results demonstrate that LASzip achieves the highest average
compression ratio (84.67%), reducing files to 16.33% of their
original size, while BSC excels in speed, compressing data 3-
4 times faster than alternatives. Integrity validation via MD5
checksums and visual inspections confirms lossless preservation
of point cloud structure and attributes. The findings highlight a
clear trade-off: LASzip and NanoZip optimize storage efficiency,
whereas BSC prioritizes rapid processing. This work provides
actionable insights for selecting compression methods tailored
to application needs, whether maximizing storage savings in
environmental monitoring or enabling real-time performance in
autonomous systems.
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I. INTRODUCTION

LiDAR (Light Detection and Ranging) remote sensing has
established itself as one of the leading technologies for acquir-
ing high-precision three-dimensional data in environmental,
urban, and engineering studies. The technique is based on
the emission of laser pulses and the measurement of their
return time after striking surfaces, enabling the generation
of point clouds that accurately represent the morphology
of the terrain and objects within the area of interest. This
level of detail has driven significant advancements in fields
such as topographic mapping, forest inventory, and urban
modeling. Beyond these traditional applications, LiDAR is
increasingly integral to emerging technologies such as IoT-
enabled environmental monitoring networks and drone-based
systems. For instance, in IoT ecosystems, distributed LiDAR
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sensor arrays are deployed for real-time flood prediction,
pollution tracking, and smart city infrastructure management,
where granular spatial data informs adaptive urban planning
[1]. Similarly, drone-mounted LiDAR systems revolutionize
precision agriculture by enabling high-resolution crop health
assessment, infrastructure inspection, and disaster response,
where rapid 3D mapping enhances decision-making in dy-
namic environments [2], [3].

However, the high density of points collected in LiDAR
surveys results in large volumes of data, often organized
into multiple large files. Each recorded point stores detailed
information, such as spatial coordinates, return intensity, and,
in some cases, spectral attributes, substantially increasing the
generated files’ size. The fragmentation of these data into nu-
merous files aims to facilitate processing and analysis but may
also pose challenges related to storage, manipulation, and data
integrity. These challenges are exacerbated in IoT and drone
applications: energy-constrained IoT devices require efficient
bandwidth utilization for real-time data transmission, while
drones face limitations in onboard storage and computational
capacity during prolonged missions. Furthermore, applications
like drone-based obstacle avoidance or IoT-driven emergency
response demand low-latency processing, where uncompressed
data streams can hinder system performance [4].

In this context, it becomes crucial to discuss the benefits
of LiDAR and the inherent challenges in managing the large
volumes of data it produces, particularly in IoT and drone use
cases. Understanding these aspects is essential for adopting
effective storage, processing, and analysis strategies, thereby
contributing to the optimized use of this technology across
various research and application contexts [4], [5].

Given the substantial computational requirements associated
with LiDAR data processing and the necessity of preserving
an optimal level of detail, the application of data compres-
sion techniques must carefully account for the computational
resources involved in both compression and decompression
processes, while ensuring the preservation of data integrity
throughout [3], [5]. For IoT networks, lightweight compression
algorithms are critical to minimize energy consumption during
data transmission, enabling edge devices to operate sustainably
in remote or resource-limited settings. In drone systems, adap-
tive compression methods that balance resolution retention
with file size reduction can enhance real-time navigation and
mapping capabilities, ensuring efficient use of limited onboard
storage and processing power [5], [6]. By addressing these
domain-specific constraints, LiDAR data compression not only
mitigates storage and transmission bottlenecks but also unlocks
new possibilities for scalable, real-time applications across
smart infrastructure, autonomous systems, and environmental
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monitoring [7]–[10].
Therefore, we evaluate lossless compression methods for

LiDAR point cloud data, addressing the challenges posed
by large file sizes in resource-constrained environments. We
compare specialized algorithms (e.g., LASzip) and general-
purpose tools (e.g., 7-Zip, BSC) using real-world airborne
LiDAR datasets from Washington, DC. Key contributions
include identifying LASzip as the most efficient in achieving
an average compression ratio of 84.67%, significantly reducing
storage needs while preserving data integrity. The study also
highlights BSC as the fastest algorithm, compressing files 3-
4 times quicker than other methods, albeit with a moderate
compression ratio. Through integrity validation using MD5
checksums and visual inspections, we confirm the lossless
nature of these techniques. Their analysis provides actionable
insights for selecting algorithms based on application priori-
ties, optimal storage (LASzip/NanoZip) versus rapid process-
ing (BSC), and advancing efficient LiDAR data management
in domains like environmental monitoring and autonomous
systems.

This article is organized into sections: Section I provides an
overview of the work; Section II presents the motivations that
guided the research. The methodology and the experiments
conducted are described in Section III, while the results are
detailed in Section IV. Finally, Section V discusses the findings
and the opportunities opened by this research.

II. RELATED WORK

The work in [2] presents a comparative analysis between
specialized and general-purpose algorithms for lossless com-
pression of airborne LiDAR data. The study evaluates three
LiDAR-specific compression algorithms (LASzip, LASComp,
and LiDAR Compressor) and three general-purpose compres-
sion algorithms (7-Zip, WinZip, and WinRAR), using real
LiDAR point cloud datasets from the city of Washington, DC.

The algorithms were compared in terms of compression
ratio, compression time, and bits per point. The results indicate
that LASzip, a LiDAR-specific algorithm, achieved the best
overall performance, with an average compression ratio of
16.63% of the original file size and an average compression
time of 16.65 seconds. Among the general-purpose algorithms,
WinRAR achieved better results than LiDAR Compressor in
terms of compression ratio (20.24% of the original file size).
However, the LiDAR-specific algorithms outperformed the
general-purpose ones regarding compression efficiency.

In [4], the authors present a framework for compressing
and transmitting LiDAR-generated point clouds in automotive
scenarios, using semantic segmentation to guide the process.
The point cloud is divided into semantically coherent groups,
which are individually compressed with lossy algorithms and
transmitted with parameters dynamically adjusted according to
each group’s relevance to the application. The proposed CAC-
TUS method prioritizes maintaining the semantic integrity of
critical data segments, ensuring that essential information is
preserved despite compression losses.

In [5], the authors propose a deep learning-based approach
for compressing LiDAR-generated point clouds, employing a

convolutional autoencoder that processes raw data directly,
without relying on discretization structures. The encoder
extracts compact local feature descriptors to form a latent
representation, while the decoder reconstructs dense geometry
using a novel deconvolution technique, reducing quantization
errors and memory overhead. Experimental results show that
the method surpasses traditional compression techniques in
reconstruction quality at comparable bit rates, achieving high
compression ratios and efficient data handling in large-scale
outdoor scenarios.

III. METHODOLOGY

Several steps were followed to conduct the comparative
study, as shown in Figure 1. Initially, the data were stan-
dardized to ensure consistency and comparability of results.
Subsequently, the selected compression algorithms were ap-
plied to the standardized files. The data collected during the
compression process and the characteristics of the compressed
files were analyzed to establish performance metrics. Finally,
the files with the best compression results were decompressed,
and their integrity was verified by comparing them to the
original file.

Fig. 1: Methodology Flowchart.

A. Dataset

To perform the compressions, data from real point cloud
datasets obtained by Airborne LiDAR systems over the city
of Washington, DC (District of Columbia) were used [6]. Each
dataset represents a LiDAR point cloud, that is, a collection
of millions of three-dimensional points (x, y, z) representing
the Earth’s surface, buildings, vegetation, and other objects
captured during the flight of an airborne LiDAR system [6].

The data are in the standard LAS format of the ASPRS
(American Society for Photogrammetry and Remote Sensing).
Each point typically includes, in addition to the spatial coor-
dinates, attributes such as laser return intensity, object clas-
sification (ground, vegetation, building, etc.), pulse number,
timestamp, among other metadata relevant for applications in
remote sensing, 3D modeling, Digital Elevation Model (DEM)
generation, among other uses [6]. Table I shows each dataset’s
file size in bytes.

TABLE I: Group of LiDAR Data for Testing

File name File Size (Bytes)
1 1120.las 1.236.304.420
2 1121.las 1.087.954.270
3 1122.las 1.101.359.710
4 1317.las 1.106.791.720
5 1318.las 849.407.590
6 1319.las 1.006.267.960
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B. Data Compression Algorithms

Data compression reduces file size by eliminating redun-
dancy through statistical or dictionary-based methods, opti-
mizing storage and transmission efficiency. Techniques are
lossy (irreversible data removal, yielding approximate recon-
structions) or lossless (exact reconstruction via redundancy
reduction). For LiDAR applications, lossless compression is
critical to preserve the geometric and radiometric precision of
point cloud data in ‘.las‘ files, which contain dense spatial
coordinates, intensity values, and metadata [2].

ZIP and GZIP are foundational lossless compression for-
mats widely used for general-purpose data. ZIP employs the
DEFLATE algorithm, which combines LZ77 (a dictionary-
based method for detecting repeated sequences) with Huffman
coding (entropy encoding to assign shorter codes to frequent
symbols). ZIP also supports file archiving, enabling multiple
files to be bundled into a single compressed archive. GZIP,
based on the same DEFLATE algorithm, is optimized for
single-file compression and is commonly used in Unix-based
systems and web servers for reducing HTTP payload sizes.
While ZIP includes metadata for file structure, GZIP focuses
on streaming efficiency, making it ideal for log files and
network transmission.

Symbol Ranking Version 2 (sr2) is a context-modeling,
lossless compressor optimized for speed over maximum com-
pression ratios. It operates as a single-file compressor with a
fixed 6 MB memory footprint. sr2 employs a hybrid context
model, combining an order-4 context that tracks the last three
observed bytes to predict the next symbol (maintaining a
dynamic ranking of recently seen symbols) with an order-
1 fallback model for symbols not predicted by the higher-
order context. Both contexts feed into an adaptive arithmetic
coder, which assigns shorter codes to higher-ranked symbols.
While sr2 sacrifices some compression efficiency for speed,
its lightweight design suits real-time applications or memory-
constrained systems [7].

LASzip, a lossless, open-source compressor tailored for
LiDAR data, was developed by Martin Isenburg to convert
‘.las‘ files to ‘.laz‘ with 80–93% size reduction while retain-
ing full data integrity. It employs component-wise encoding
to separate LiDAR attributes such as coordinates, intensity,
and GPS time for targeted compression. For example, delta
encoding reduces integer magnitude and entropy by stor-
ing differences between consecutive point coordinates, while
run-length encoding (RLE) compresses repeated values like
classification flags. Residual values are further compressed
using range coding, a variant of arithmetic coding. LASzip
also implements chunk-based parallelism, dividing data into
blocks for multi-core processing. The resulting ‘.laz‘ files
remain backward-compatible with LAS-supporting software
via integrated decompression libraries, solidifying LASzip as
the de facto standard for LiDAR compression [8].

NanoZip (NZ), an experimental high-ratio archiver by Sami
Runsas, combines statistical modeling and dictionary-based
techniques. It uses context mixing (CM) to blend predictions
from diverse models, such as Burrows-Wheeler Transform
(BWT) and LZ77 predictors (LZP), alongside LZ77 variants

for detecting repeated byte sequences. Multi-threading splits
files into chunks for parallel processing on modern CPUs,
prioritizing compression efficiency over speed. This modular
design allows users to select algorithms based on data type,
making NanoZip suitable for archival purposes where maxi-
mum compression is prioritized [9], [10].

Block Sorting Compressor (bsc), developed by Ilya Greb-
nov, is a parallelized lossless compressor leveraging the
Burrows-Wheeler Transform (BWT). The BWT rearranges
data into reversible, entropy-optimized blocks, which are then
processed by move-to-front (MTF) encoding to enhance Huff-
man or arithmetic coding efficiency. Independent blocks are
compressed concurrently across multiple CPU cores, enabling
linear performance scaling. While bsc achieves high com-
pression ratios on repetitive data like genomic sequences or
logs, its reliance on BWT requires significant memory for
transformation tables [11].

7-Zip, developed by Igor Pavlov, is a versatile open-source
tool supporting the LZMA (Lempel-Ziv-Markov chain Al-
gorithm) and LZMA2 formats. LZMA combines a sliding-
window LZ77 parser with a range coder, utilizing a 4 GB
dictionary to detect long-distance redundancies. LZMA2 en-
hances this with multi-threaded chunk processing and im-
proved handling of incompressible data. Additional prepro-
cessing filters, such as BCJ (branch call jump), optimize the
compression of executable files. While its graphical interface is
Windows-exclusive, the command-line port (‘p7zip‘) supports
Linux and macOS. 7-Zip’s balance of speed and compression
ratio has made it a popular choice for general-purpose use
[12].

C. Performance Metrics

Several characteristics were analyzed to evaluate each
compression algorithm’s performance, including compression
time, resulting file size, and compression ratio, which is
calculated according to Eq. (1).

compression_ratio =

(
1− size_after

size_before

)
× 100. (1)

The equation indicates that the compression ratio represents
a comparison between the file size before and after applying
a compression method. For example, a 1GB file compressed
with a 65% compression ratio will result in a final size of
approximately 350MB.

D. Integrity Analysis

An integrity validation procedure was conducted in two
stages to ensure that the compression and subsequent decom-
pression processes did not alter the original data. Initially,
visual inspections were performed using point cloud visualiza-
tion software to qualitatively assess any perceptible differences
between the original and decompressed files. This step aimed
to detect distortions or loss of data structure, particularly in
spatial distribution and scalar field values.

Subsequently, MD5 checksum verifications were carried
out on the original and decompressed files. This crypto-
graphic hash function generates a unique fingerprint for each
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TABLE II: File Size After Compression in Mega Bytes (MB)

File 7-Zip Zip GZip LASzip NZ BSC sr2
1120.las 294 421 421 194 224 384 388
1121.las 255 367 367 167 195 338 339
1122.las 254 366 366 166 194 341 341
1317.las 257 374 374 167 195 345 347
1318.las 201 290 290 133 157 265 265
1319.las 234 339 339 153 179 317 316

file, allowing for a precise binary-level comparison. Identical
MD5 values indicate that the file content remains unchanged
throughout the compression cycle, thus confirming the lossless
nature of the process. Discrepancies in hash results were
further analyzed to determine whether they stemmed from
differences in compression strategies (e.g., streaming formats
or metadata alterations) or actual loss of point cloud data.

IV. RESULTS AND DISCUSSIONS

For the compression process and the evaluation of com-
pression rates and processing times, the general-purpose algo-
rithms WinZip, 7-Zip, and Gzip were used, through the soft-
ware 7-Zip Manager, commonly known simply as 7-Zip [13]
and a domain-specific compression algorithm, LASzip [14].
In addition, three lossless compression algorithms available on
Matt Mahoney’s "Large Text Compression Benchmark" page
were used: Nanozip, BSC, and sr2.

The tests were conducted on a computer with the following
specifications: Dell Inc. Inspiron 14 5440, equipped with
32GB of RAM, an Intel Core i7-150U (12 cores), and both
Intel RPL-U integrated graphics and an NVIDIA GeForce
MX570 A GPU. The operating system used was Ubuntu
24.04.2 LTS.

The results obtained from the six compression algorithms
in terms of compression ratio (calculated based on Eq. (1)) on
the test dataset are presented in Tables II and III.

The results obtained from the six update algorithms in terms
of update time (on the test dataset) are presented in Table IV.

The algorithms exhibited distinct performances in terms
of compression ratio and processing time. LASzip stood out
with the highest efficiency in file size reduction, achieving
an average compression ratio of 84.67%, surpassing all other
methods. This result suggests that algorithms specialized for
LiDAR data, such as LASzip, are more suitable for lossless
compression in this context, as they leverage the specific
structure of LAS files. Nanozip achieved the second-best
compression ratio (82.08%), outperforming general-purpose
algorithms such as 7-Zip (76.61%), Zip (66.24%), and GZip
(66.23%).

TABLE III: Average Compression Ratio by Algorithm

Algorithm Average Compression Ratio
1 7-Zip 76,61%
2 Zip 66,24%
3 GZip 66,23%
4 Nanozip 82,08%
5 BSC 68,83%
6 LASzip 84,67%
7 sr2 68,75%

TABLE IV: Compression Time (in seconds)

File 7-Zip Zip GZip LASzip NZ BSC sr2
1120.las 60 90 93 34 72 23 67
1121.las 55 81 79 17 98 20 25
1122.las 87 83 80 15 35 21 27
1317.las 62 81 89 18 83 20 26
1318.las 56 61 60 25 30 15 19
1319.las 69 75 73 23 82 17 23
Average 64,83 78,50 79,00 22 66,7 19,33 31

Regarding compression time, BSC proved to be the fastest,
with an average of 19.33 seconds—approximately 3.4 times
faster than 7-Zip (64.83 seconds) and 4.1 times faster than
Nanozip (66.7 seconds). However, this speed came with a
moderate compression ratio (68.83%), lower than that of
LASzip and Nanozip. The sr2 algorithm partially balanced
these factors, with an average time of 31 seconds and a
compression ratio of 68.75%, similar to BSC.

The file-level analysis reinforced these trends: for the file
1120.las, LASzip achieved a size of 185 MB (85% reduction),
while 7-Zip reached 280 MB (76.6%). BSC compressed the
same file to 366 MB (68.8%) in just 23 seconds, compared
to 60 seconds for 7-Zip. These results indicate an inverse
relationship between compression efficiency and speed, requir-
ing choices based on application priorities—optimized storage
(LASzip/Nanozip) or faster processing (BSC).

Figures 2a, 2b, 2c, and 2d show visualizations of the
point cloud from file 1319.las: in its original form, after
decompression using the BSC method, after decompression
using NanoZip, and from the .laz file generated by LASzip,
respectively. The visual similarity among the four point clouds
and the preservation of scalar field values verified through
visualization software indicate that none of the compression
methods introduce perceptible alterations to the original data.
Thus, it can be concluded that these compression and decom-
pression processes preserve the integrity of the point cloud.

A comparison between the original 1319.las file and its
decompressed versions from NanoZip and BSC were per-
formed using an MD5 checksum verifier. Both methods re-
turned identical checksums, confirming the preservation of
the original file’s data. A similar test was conducted with
the .laz file generated by LASzip, which initially produced a
different checksum. This discrepancy arises because .laz files
are optimized for direct use without explicit decompression,
resulting in a different binary structure despite representing the
same point cloud. Notably, the original .las file and the .laz
file contain the same number of points, totaling 33,540,692.
However, when the .laz file is fully decompressed back into
a .las format, the resulting checksum matches the original,
confirming the lossless nature of LASzip compression.

A test involving the compression of a .las file to .laz
using LASzip, alongside another compression method, yielded
unsatisfactory results, as the average compression ratio was
below 1%. However, the compression time remained low,
averaging only a few seconds.

V. CONCLUSIONS

The comparative analysis of compression algorithms for
LiDAR point cloud data underscores that the optimal method
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(a). Without compression (b). Decompressed by bsc

(c). Decompressed by NanoZip (d). Compressed by LasZip

Fig. 2: Comparing the original and compressed versions of file 1319.las across different methods.

depends on the application’s priorities. LASzip emerged as
the most storage-efficient solution, achieving an average com-
pression ratio of 84.67% (reducing files to 16.33% of their
original size), making it ideal for scenarios where maximizing
storage savings is critical, such as archival or bandwidth-
constrained IoT and drone systems. In contrast, BSC excelled
in processing speed, compressing data 3-4 times faster than
alternatives (average: 19.33 seconds), positioning it as the
preferred choice for real-time applications like drone-based
mapping or autonomous navigation.

While LASzip and NanoZip outperformed general-purpose
tools in efficiency, BSC’s compatibility with Linux-based
systems (e.g., Ubuntu, Raspberry Pi) extends its utility to
embedded, drone, and IoT devices, enabling field-deployable
solutions. Notably, the study confirmed the lossless integrity
of all algorithms through MD5 checksums and visual inspec-
tions, ensuring fidelity for precision-critical applications like
topographic modeling or environmental monitoring.

LASzip remains the top performer for compression ratio,
while BSC leads in speed. NanoZip offers a balance but
does not surpass LASzip in compression efficiency. General-
purpose tools (e.g., 7-Zip) offer a middle ground but are less
optimized for LiDAR’s unique data structures.

Future work should explore machine learning-driven adap-
tive compression, such as autoencoder-based models, to dy-
namically prioritize semantically critical LiDAR data segments
(e.g., urban infrastructure vs. vegetation) while maintain-
ing acceptable fidelity in lossy contexts. Additionally, edge-
optimized lightweight compression methods must be devel-
oped to address IoT devices’ and drone systems’ stringent
energy and real-time processing constraints, ensuring efficient
deployment in resource-limited scenarios.

In summary, this study provides actionable insights for
selecting algorithms based on workflow needs, LASzip for
storage optimization, BSC for speed, while highlighting open
challenges for future research in scalable, intelligent compres-

sion systems.
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