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Abstract— The performance of wireless communication 

systems is primarily influenced by the mobile radio channel and 

its propagation mechanisms. This paper proposes an approach 

for characterizing wideband mobile radio channels based on 

hidden Markov model, in which the Viterbi algorithm is 

employed to provide a computationally efficient method for 

obtaining the likelihood sequence of hidden states (representing 

the radio propagation environments) from a set of observable 

states (channel temporal dispersion parameters). This approach 

enables the mobile radio channel classification into distinct 

transmission environments. The technique has proven to be a 

suitable option for statistically describing and classifying the 

wideband radio channel. 
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I.  INTRODUCTION  

Wireless communication systems have evolved over 
generations to support a wide range of devices and services, 
addressing the current demands of various market segments 
[1]. In fact, the mobile radio channel (MRC) and its 
propagation mechanisms impose significant limitations on the 
performance of radio communication systems [2] [3]. 
Therefore, comprehensive knowledge and understanding of 
different types of MRC have become critical skills for the 
design and optimization of modern high-performance wireless 
communication systems. 

In this context, this paper proposes the application of the 
hidden Markov model (HMM) technique and the Viterbi 
algorithm to classify distinct transmission environments, based 
on the characterization of the wideband MRC within each 
propagation scenario. This research builds upon previous 
studies [4] [5] [6], in which HMMs were employed to 
statistically characterize wideband MRCs in different locations, 
using the main temporal dispersion parameters of the MRC 
(average delay and delay spread) and yielding positive results. 

The organization of this paper is as follows: Section II 
exposes succinctly the characterization of the MRC, the HMM 
application, and the Viterbi algorithm. Section III briefly 
details the measurement setup, the environment of the 
measurement campaign, and data collection process. Section 
IV describes the proposed methodology to apply the HMM and 
Viterbi algorithm in MRC classification. Section V starts by 
presenting the evaluations, and then evaluates the results. 
Section VI summarizes the ideas discussed throughout the 
paper, presents the conclusions, and outlines some suggestions 
for further research. 

II. CHARACTERIZATION OF THE MOBILE RADIO CHANNEL 

AND HIDDEN MARKOV MODEL 

A. Characterization of the mobile radio channel 

Radio waves propagate through the mobile radio channel 
(MRC) and are mainly influenced by physical and natural 
phenomena known as propagation mechanisms, which describe 
the effects of reflection, scattering, and diffraction [2]. These 
propagation mechanisms generate multiple waves that travel 
along the radio link path until reaching the destination. The 
superposition of these waves, each one propagating along 
different paths with distinct amplitudes, phases, and delays, 
constitutes the received signal. 

In this context, radio waves may propagate through a direct 
line-of-sight (LOS) path between transmitter and receiver, or, 
more commonly, experience non-line-of-sight (NLOS) 
propagation, encountering various obstacles such as buildings, 
trees, vehicles, pedestrians, and mountains. These obstacles 
give rise to multiple propagation paths, characterizing what is 
referred to as a multipath environment [2]. 

The received signals resulting from the superposition of 
multiple radio waves at the receiving antenna exhibit 
attenuation and fluctuations in amplitude, a phenomenon 
known as fading. Fading can be categorized into large-scale 
fading (associated with path loss and shadowing) and small-
scale fading (related to localized variations over distances on 
the order of half a wavelength) [3]. 

Due to the effects of large-scale and small-scale fading, the 
radio link experiences constructive and destructive 
interference, leading to the formation of distinct propagation 
environments and, consequently, affecting the characteristics of 
the MRC. Therefore, the MRC and its associated propagation 
mechanisms have a significant impact on wireless 
communication systems, often limiting their performance. 

As a result, the design and evolution of mobile 
communication systems must carefully consider the adverse 
impacts of the MRC. Proper channel characterization and 
dimensioning are essential for achieving more effective, 
reliable, and high-performance wireless systems. 

B. Hidden Markov model technique 

Although there is an extensive range of applications for 
Markov chains, the focus of this paper is on phenomena that 
are not directly exposed to observers. In such cases, states of 
the Markov chain are called hidden states, and thereby 
inferences about a particular phenomenon are only unveiled by 
examination of secondary incidents designated as observable 
states [7]. Thus, the hidden Markov Model (HMM) technique 
involves the adoption of two distinct stochastic processes: the 
layer of hidden states constitutes the unobservable Markov 
chain (satisfying the Markov property), and the layer of 
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observable states represents the visible outputs, which are 
linked with each hidden state or associated with each transition 
between hidden states, and therefore are entirely dependent on 
the random activities of the hidden states [8]. Transitions 
between hidden states follow a probabilistic set of rules and 
usually assume the most common form of a first-order Markov 
chain, exposing the observable states while flowing between 
hidden states. So, the evolution of random incidents that 
represent the observable states (visible outputs) indicates 
indirectly the evolution of the hidden states. 

Different research efforts have adopted the HMM technique 
[4] [9] [10]. It appears as a strong mathematical tool basis to 
model time series, characterizing complex systems with 
temporal elements, which can be subjected to noises or other 
sources [11]. Given a time interval T, in which there are 
discrete and finite numbers of the generic time instant t, HMM 
can be represented as follows: 

𝑇-long sequence of hidden states 𝑠 is indicated as the set of 
hidden states 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑇). 

𝑇-long sequence of observed states 𝑦 is pointed out as the 
set of observable states 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑇). 

Transition probability from the hidden state 𝑠𝑖 to 𝑠𝑗 is 

represented by 𝑎𝑖𝑗 . The set of hidden state transitions leads to 𝑆 

by 𝑆 row-stochastic matrix named state transition probability 
matrix 𝐴, which is a square matrix with dimensions 𝑆 by 𝑆, and 

the sum of its rows is always equal to one, ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 = 1. 

Matrix 𝐴 is depicted below. 

                      𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑁
𝑎21

⋮
𝑎𝑁1

𝑎22

⋮
𝑎𝑁2

⋯ 𝑎2𝑁

⋱
…

⋮
𝑎𝑁𝑁

]                        (1)   

Transition probability to hidden state 𝑠𝑗 leads to probability 

distribution of the observable state that is represented by 𝑏𝑗, 

mapping the sequence of hidden states into observable states 
sequence. The group of observed states 𝑏𝑗 results to a 

rectangular matrix 𝐵 named emissions matrix or observation 
probability matrix. As is true for matrix 𝐴, the sum along the 

matrix 𝐵 rows is equal to one, ∑ 𝑏𝑗
𝑀
𝑗=1 = 1. Matrix 𝐵 is 

depicted below. 

                             𝐵 = [

𝑏11 𝑏12 ⋯ 𝑏1𝑀

𝑏21

⋮
𝑏𝑁1

𝑏22

⋮
𝑏𝑁2

⋯ 𝑏2𝑀

⋱
…

⋮
𝑏𝑁𝑀

]                      (2) 

Initial hidden state referred to as 𝑟𝑖, in which the elements 
describe the probability distribution of the initial model in the 
time instant represented as 𝑡 = 1. The collection of these 
elements leds to initial state distribution 𝑅 = {𝑟𝑖} for 𝑖 =
1, … , 𝑁 in which 𝑟𝑖 = 𝑃(𝑞𝑡 = 𝑠𝑖) in 𝑡 = 1. 𝑅 is defined as a 
start probability vector which is filled out with initial probability 
of the discrete hidden states. 

                            𝑅 = [𝑟1 𝑟2 … 𝑟𝑁]                          (3) 

In the light of the above, a complete specification of HMM 
can be summarized as:  

                                   MHMM = (A, B, R)                          (4) 

In the context of the HMM, it is possible to consider three 
significant problems [11]: evaluation (computing the 
probability of an observation sequence), estimation (finding the 
most likely hidden state sequence), and training (learning the 
model parameters). The fundamental challenges listed above 
are the core computational tasks when dealing with HMM, as 
shown in Table I. It is possible to address all three 
computational challenges, depending on the specific 
application, or the main focus can vary based on what it is 
trying to achieve. This paper focus attention on the estimation 
problem (decoding problem) trying to uncover the likeliest 
sequence of hidden states from a set of observable states. 

TABLE I.  THREE BASIC PROBLEMS FOR HMM [11]. 

Problem name Description 

1. Evaluation problem 

Given the sequence of observed states 𝑌 and 
the model 𝑀𝐻𝑀𝑀, how to compute the 
𝑃(𝑌 ∨ 𝑀𝐻𝑀𝑀)? 
Solution: forward-backward algorithm. 

2. Estimation or 
decoding problem 

Given the sequence of observed states 𝑌, how 
to compute the optimal (in some meaningful 
sense) sequence of hidden states 𝑆? 
Solution: Viterbi algorithm. 

3. Training problem 

How to change slightly the model parameters 
𝑀𝐻𝑀𝑀 = (𝐴, 𝐵, 𝑅) to achieve the 
maximization of  P(𝑌 ∨ 𝑀𝐻𝑀𝑀)? 
Solution: Baum-Welch algorithm. 

C. The Viterbi Algorithm 

The Viterbi algorithm can be associated with the operation 
of discrete HMM and provides computational and efficient 
method to achieve the a posteriori likeliest sequence of hidden 
states, given a set of observed incidents. In other words, this 
algorithm takes advantage of the recursion process to compute 
the most likely sequence of hidden states that generated a given 
observation sequence. Instead of keeping track of all paths 
during execution, the Viterbi algorithm computes the ideal 
subpaths and discards the others subpaths while it crosses the 
sequence of observed states. 

The algorithm starts with definition of 𝛿𝑡(𝑖) and ѱ1(𝑗). Out 
of all possible sequences of hidden states leading up to 𝑆𝑖 at 
time 𝑡, 𝛿𝑡(𝑖) calculates the highest probability of ending up at 
this state 𝑆𝑖 at time 𝑡. In addition the array ѱ1(𝑗) is used to 
keep track of the computed maximum values in 𝛿𝑡(𝑖). This 
Viterbi algorithm can be described in the following steps: 

Initialization: 
𝛿1(𝑖) = 𝑟𝑖𝑏𝑖(𝑦1) 1 ≤ 𝑖 ≤ 𝑁

ѱ1(𝑖) = 0
          (5)  

Recursion: 

                  
𝛿𝑡(𝑗) = 𝑚𝑎𝑥1≤𝑖≤𝑁[𝛿𝑡−1(𝑖)𝑎𝑖𝑗]𝑏𝑗(𝑦𝑡)

2 ≤ 𝑡 ≤ 𝑇 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑁
             (6) 

                   
ѱ𝑡(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑁[𝛿𝑡−1(𝑖)𝑎𝑖𝑗]

2 ≤ 𝑡 ≤ 𝑇 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑁
               (7) 

Termination: 
                           𝑃 = 𝑚𝑎𝑥1≤𝑖≤𝑁[𝛿𝑇(𝑖)]                             (8) 

                      𝑞𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑁[𝛿𝑇(𝑖)]                         (9)   

Backtracking path: 

                          
𝑞𝑡 = ѱ𝑡+1(𝑞𝑡+1)

𝑡 = 𝑇 − 1, 𝑇 − 2, … ,1
                            (10) 
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III. MEASUREMENT CAMPAIGN 

A. Measurement setup 

The swept-measurement technique has been adopted. It is a 
channel sounding method in the frequency domain, limited to 
shorter distances because the receiving and transmitting 
antennas have to be connected to the same vector network 
analyzer (VNA) equipment [2]. A total of 1,601 sinusoidal 
signal samples of 10 dBm amplitude was generated and 
transmitted, successively, in discrete frequencies and equally 
spaced along a frequency band of 750 MHz (from 960 MHz to 
1,710 MHz). Through the input port, the transceiver VNA 
completely swept the frequency band with the respective 10 
dBm sinusoidal carriers and, in parallel, monitored the output 
port, providing the transfer function of the channel (channel 
impulse response) in the frequency domain. 60-meter coaxial 
cable was used, permitting to perform measures in short 
distances, of up that value. The main parameters of the 
measurement setup are indicated in Table II. 

TABLE II.   CHANNEL SOUNDING PARAMETERS [12]. 

Parameters Value Unit 

Frequency band 960 to 1,710 MHz 

Bandwidth 750 MHz 

Transmitted power level +10 dBm 

Low Noise Amplifier (LNA) gain 25 dB 

Antennas gain 2,14 dBi 
Frequency resolution (Δf) 0.46875 MHz 

Sweep-measuring samples 1,601 - 

Sweep-measuring time 696 ms 

Delay resolution (Δτ) 1,333 ns 

Maximum delay (τMAX) 2,133 ns 

The proper equipment was as follow [12]: broadband 
omnidirectional antennas with discone design that were 
positioned 1.5 m above the ground; VNA (model Hewlett 
Packard HP8714ET); HP acquisition board to connect the 
VNA to laptop with Matlab software interface; laptop to 
control the measurement campaign and save all measure data; 
low noise amplifier (LNA, model MINI-Circuits ZLR-2150); 
voltage supply 12VCC to energy the LNA; HPIB cable 
(Hewlett Packard Interface Bus); N-type and SMA-type 
connectors and coaxial cables (models RG-213 and RG-58U). 

The system was properly calibrated before each 
measurement campaign to secure the compensation for 
equipment losses and, moreover, the transmitter and receiver 
were synchronized. Therefore, all data recorded during the 
measurement campaign corresponded entirely to the behavior 
of the propagation channel. 

B. Environment of the measurement campaign and data 

collection process 

The measurement campaign was conducted on the Praia 
Vermelha Campus from Fluminense Federal University, 
located in Niterói city, state of Rio de Janeiro, Brazil. The 
campaign was performed on the third floor inside the building 
and outside, in an opened corridor, connecting the building 
block D to another building block E. The opened environment 
between the buildings is surrounded by stone benches, a garden 
on a sloping area and trees. 

As illustrated in Figure 1, the transmitter (TX) and receiver 
(RX) were set up in different positions to capture the channel 
transfer function at different scenarios. The environment was 

previously selected for the measurement campaign and 
correspond to so-called indoor, transition environment from 
internal to external place (indoor-outdoor), and vice versa 
(outdoor-indoor). 

 

Fig. 1.  Plant layout - Third floor building, UFF Praia Vermelha Campus. 

At this selected environment, the reception was set up to 
capture the channel transfer function at different positions, 
which shall be appointed as RX. For each location RX, a 6-by-
6 quadrangular grid was set up, mapping 36 reception dots 
equally spaced by 15 cm [12]. For wideband frequency (750 
MHz bandwidth), in which the values of λ ranged between 
17.54 cm (upper frequency of 1,710 MHz) and 31.25 cm 
(lower frequency of 960 MHz), given that 0.38 λ is the 
necessary distance between uncorrelated samples [3], the 
spacing of 15 cm was calculated to ensure that the 
measurements of the 36 dots of each location RX were not 
correlated. Hence, the equally spaced dots, set apart by 15 cm 
in the grid, were sufficient to guarantee the de-correlation at 
signal reception among the 36 dots. 

The measurements of the channel transfer function at each 
dot were performed in a row, one after the other until reaching 
the 6-by-6 quadrangular grid at each location RX. In each dot, 
during the frequency sweep of 696 ms, a set of 1,601 samples 
of 10 dBm equally spaced swept completely the 750 MHz 
bandwidth, thereby generating 1,601 impulse responses that 
were recorded and saved on local laptop. This stored database 
was preprocessed and treated to achieve, in the time domain, a 
set of 1,601 samples of the channel impulse response. Based on 
this information, the temporal dispersion parameter of the 
MRC (average delay τm) were reached. 

It is important to emphasize that during the frequency 
sweep of 696 ms, which was entirely treated as a time instant, 
special attention and all necessary precautions were put in 
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place to ensure the MRC remained static. Measurements were 
carried out during least busy hours (weekends and evening late 
or early morning) and researchers ensured no movement of 
people and themselves surrounding the measurement site on 
the time instant of frequency sweep [12]. Therefore, no 
changes in the environment were seen during the frequency 
sweep of 696 ms, guaranteeing an instantaneous measurement. 

IV. RESEARCH METHODOLOGY 

A. Data acquisition and preprocessing from MRC 

Due to the dual relationship between time and frequency 
domains, it was possible to measure the channel impulse 
response in the frequency domain (via swept-measurement 
technique) [2] and the main temporal dispersion parameters of 
the MRC in the time domain were provided indirectly. 

Each reception location appointed as RX captured the 
channel frequency responses and, for each RX, it was used a 6-
by-6 quadrangular grid. By taking into account the 36 
measurements of impulse response performed in a row as the 
concatenation of short events, in which it was regarded that the 
variables assumed discrete values and the autocorrelations were 
invariant during short temporal transitions [3], it was admitted 
to design each RX as a radio channel named Quasi-Wide-Sense 
Stationary Uncorrelated Scattering (QWSSUS). 

For each moment, each dot in the 6-by-6 quadrangular grid, 
the data corresponded to the responses of the channel through 
the frequency sweep with sinusoidal carriers and, therefore, 
related to the channel transfer function 𝑇(𝑓, 𝑡) defined as the 
MRC frequency response for each moment, each point in time 
[3]. Since the channel was considered a linear filter, the input 
and output records were characterized directly by 𝑇(𝑓, 𝑡). The 
3-term Blackman-Harris window function was used to 
minimize the spectral leakage, caused by the discretization, and 
the Inverse Discrete Fourier Transform (IDFT) was applied to 
obtain the impulsive responses of the channel, ℎ(𝑡, 𝜏). From 
them, the power delay profiles 𝑃ℎ(𝜏) could be obtained for 
each one of the 36 measurements of each RX location [3]. In 
these profiles, the CFAR (Constant False Alarm Rate) 
technique was applied to clean the noise [14], highlighting and 
filtering only valid paths through their amplitudes and delays. 
After pre-processing these data, the average delay parameter 
𝜏𝑚 for MRC characterization was obtained [3]. Thus for each 
dot of the 6-by-6 quadrangular grid of each measurement RX 
location, matrices with 36 values of 𝜏𝑚 were generated. 

B. MRC classification using HMM and Viterbi algorithm 

Given its robustness using iterative algorithms, the HMM 
served as the technical basis for the modeling and analysis of 
the MRC. In this context, each propagation environment 
described in this paper (indoor environment, the transition 
environments outdoor-indoor and indoor-outdoor, as illustrated 
in Figure 1) had its own radio propagation characteristics and, 
therefore, were particularly affected by the propagation 
mechanisms (reflection, scattering, and diffraction). The effects 
of these phenomena on radio propagation were not directly 
visible and exposed to observers, so these environments 
affected by the propagation mechanisms were referred to as 
hidden states. Likewise, inferences on these hidden states 
(propagation environments) were carried out through 
inspections of the values of the MRC temporal dispersion 
parameter, named average delay (𝜏𝑚). Thus, the 𝜏𝑚 values 
were referred to as observable states. 

Hence, the hidden states were defined as the propagation 
environments and, inferences about these environments and the 
respective effects of the propagation mechanisms were 
revealed through the examination of secondary incidents, 
designated as the average delay values (𝜏𝑚) and described as 
observable states in the context of the HMM. 

The matrices with 36 values of 𝜏𝑚 from two different RX 
locations were grouped, with the purpose of comparing and 
classifying these two propagation environments, resulting in a 
total of 72 values. For each propagation environment, the 36 
values were randomly divided in half between training base 
and test base. The training bases were grouped (36 random 
values, 18 from each propagation environment) and used for 
initialization and training the HMM, while the test bases were 
grouped (other 36 random values, 18 from each propagation 
environment) and used to test the HMM trained model, 
checking if the Viterbi algorithm would be able to correctly 
classify the 𝜏𝑚 values from each propagation environment. 
Then confusion matrices were used to compare the true class 
(real values belonging to the test base) and the predicted class 
(optimal sequence of hidden states computed by Viterbi 
algorithm). The above procedure can be summarized as a 
pseudocode, as indicated in Table III. 

TABLE III.  PROCEDURE SUMMARIZED AS A PSEUDOCODE. 

Pseudocode Pseudocode output 

1. Select two different RX 
locations to be compared. 

Comparison between two 
propagation environments (between 
two hidden states). 

2. Calculate 𝜏𝑚 for each dot at 
the 6-by-6 quadrangular grid. 

Observable states (72 values of 𝜏𝑚 
for both propagation environments). 

3. Randomly divide in half the 
values of 𝜏𝑚 from each 
propagation environments. 

Creation of: 
- Trainig base. 
- Test base. 

4. Run HMM initialization and 
training using training base. 

Trained HMM. 

5. Run Viterbi algorithm using 
trained HMM and test base. 

Optimal sequence of hidden states 
(optimal path). 

6. Compute the confusion 
matrix to compare true classes 
and predicted classes. 

Confusion matrix for evaluating the 
accuracy of the classification. 

Furthermore, in the training stage, the stopping criterion 
could be a limited number of iterations, a value of 
improvement in likelihood compared to the previous 
parameters, or even a combination of the two previous criteria. 
That way, the number of 100 iterations was used to train and 
maximize the model parameters, and it also served as stopping 
criterion. 

V. MODEL EVALUATIONS AND RESULTS 

As previously described, at each selected RX location, the 
reception equipment was set up to acquire the impulse response 
at each dot of 6-by-6 quadrangular grid, and hence also the 
respective power delay profiles and the temporal dispersion 
parameter (average delay 𝜏𝑚) of each one of the 36 dots of 
each RX location. After that, the HMM and Viterbi algorithm 
were used to compare and classify different RX locations. The 
model evaluations and results were summarized as below. 

A. Evaluation 1 – Comparison between propagation 

environments: indoor and indoor-outdoor 

Evaluation 1 looked closely the transmissions from 𝑇𝑋1 to 
𝑅𝑋1 (indoor-outdoor) and from 𝑇𝑋1 to 𝑅𝑋2 (indoor), as shown 
in Figure 1. Therefore, in view of each transmission, 36 
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temporal dispersion parameters of 𝜏𝑚 were measured for each 
RX location (total of 72 values), and after randomly divided in 
half between training base (36 values) and test base (36 
values). The former was used for initialization and training the 
HMM, while the latter was used for testing the trained model 
and checking through confusion matrix, if the Viterbi algorithm 
was able to classify 𝑇𝑋1 to 𝑅𝑋1 as indoor-outdoor, and 𝑇𝑋1 to 
𝑅𝑋2 as indoor. 

TABLE IV.  CONFUSION MATRIX FOR THE EVALUATION 1. 

T
ru

e 
C

la
ss

 Indoor 

 
17 

(94.44 %) 
 

1 
(5.56 %) 

Indoor-
Outdoor 

 
0 

(0 %) 
 

18 
(100 %) 

 
 Indoor Indoor-Outdoor 

  Predicted Class 

Based on that, it can be seen in Table IV that the HMM and 
Viterbi algorithm succeeded in hitting 35 (97.22 %) of 36 
tested values. 

B. Evaluation 2 – Comparison between propagation 

environments: indoor-outdoor and outdoor-indoor 

Evaluation 2 examined the transmissions from 𝑇𝑋1 to 𝑅𝑋1 
(indoor-outdoor) and from 𝑇𝑋2 to 𝑅𝑋3 (outdoor-indoor), as 
shown in Figure 1. As applied to evaluation 1, in consideration 
of each transmission, 36 temporal dispersion parameters of 𝜏𝑚 
were measured for each RX location (total of 72 values), and 
after randomly divided in half between training base (36 
values) and test base (36 values). The former was used for 
initialization and training the HMM, while the latter was used 
for testing the trained model and checking through confusion 
matrix, if the Viterbi algorithm was able to classify 𝑇𝑋1 to 𝑅𝑋1 
as indoor-outdoor, and 𝑇𝑋2 to 𝑅𝑋3 as outdoor-indoor. 

TABLE V.  CONFUSION MATRIX FOR THE EVALUATION 2. 

T
ru

e 
C

la
ss

 Indoor-
Outdoor 

 
18 

(100 %) 
 

0 
(0 %) 

Outdoor-
Indoor 

 
2 

(11.11 %) 
 

16 
(88.89 %) 

 
 Indoor-Outdoor Outdoor-Indoor 

  Predicted Class 

As regards that, it can be seen in Table V that the HMM 
and Viterbi algorithm succeeded in hitting 34 (94.44 %) of 36 
tested values. 

VI. CONCLUSION 

The wireless communication systems, generation after 
generation, have evolved to support the technological 
breakthroughs and new mobile trends. The MRC 
characterization is becoming increasingly important in this 
scenario, due to fact that MRC places huge limitations on the 
performance of wireless communication systems. In this 

context, the HMM technique and Viterbi algorithm proved to 
be initially effective characterizing the MRC and classifying 
different radio propagation environments. 

As further research, it is possible to go ahead, and extended 
this work with new results as using a combination of temporal 
dispersion parameters as average delay (τm) and delay spread 
(σT) that can create a better understanding of the phenomenon 
and consequently a better score, reaching higher values in the 
classification of radio propagation environments. Other 
possible actions could be the comparison with other 
classification models, or the comparison between the HMM 
modeling using observable states directly connected to hidden 
states or associated with transitions between hidden states. Or 
even, study the use of this technique as a classification system 
that identifies the environment and adjust the parameters of 
user equipment, such as cell phones, to achieve better 
transmission and reception results. 
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