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Robust ¢, Deconvolution for Sparse Reflectivity
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Abstract— Studies have shown that seismic data may contain
non-Gaussian noise in certain geological environments, thereby
compromising the validity of the Gaussian assumption com-
monly adopted by classical signal processing methods. This
work presents a robust deconvolution method for seismic data
affected by impulsive noise, modeled using a-stable distributions.
The method relies on the minimization of the ¢, quasi-norm,
which offers increased flexibility in error modeling and improved
robustness to outliers when compared to conventional /i- or
{2-norm-based techniques. The seismic signal is modeled using
a classical convolutional formulation, and an /;-norm regular-
ization term is incorporated into the cost function to promote
sparse reflectivity. The resulting optimization problem is solved
iteratively via a gradient descent algorithm, and its effectiveness
is evaluated using synthetic seismic traces contaminated with
a-stable noise. The results demonstrate that an appropriate
choice of the parameter p can overcome limitations of traditional
methods and enhance the quality of reflectivity estimation in
impulsive noise scenarios.

Keywords— Seismic signals deconvolution, Reflectivity estima-
tion, ¢, Objective function minimization, Non-Gaussian noise,
a-stable Distribution.

I. INTRODUCTION

The adequate estimation of subsurface reflectivity from
seismic data is crucial in oil and gas exploration applications
and for the geological characterization of subsurface forma-
tions. An approach based on signal deconvolution can be used
to estimate this reflectivity from the acquired signals, since
such signals can be modeled as a convolution between the
impulsive response of the medium, which characterizes the
desired reflectivity, and the signal from the seismic source.
The quality of this estimation is strongly associated with the
processing methods’ ability to deal adequately with the noise
present in the data.

Traditionally, deconvolution has been formulated as an
estimation problem based on the minimization of the mean
squared error ({2-norm), assuming that the noise in the data
is Gaussian [1]. However, in some complex geological envi-
ronments, there may be contamination in the seismic data by
impulsive non-Gaussian noise (spikes) during seismic acquisi-
tion, significantly compromising the validity of the Gaussian
hypothesis [2], [3]. Using the ¢5-norm in these situations
becomes unfeasible due to its sensitivity to outliers. Non-
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Gaussian noise directly affects the seismic resolution and may
mask real reflectivity events.

An effective way to model the presence of non-Gaussian
noise in seismic data is through «-stable distributions. These
distributions generalize the Gaussian distribution, allowing
heavier tails that adequately capture the statistical behavior
of data that deviates from the Gaussian hypothesis [4]. In par-
ticular, experimental results have corroborated the suitability
of a-stable distributions to model the statistical behavior of
impulsive noise in seismic data [2].

In seismic reflectivity estimation problems, the choice of
the cost function used to measure the data adjustment error
(error between data and model) is a determining aspect in the
method’s robustness against noise. Although robust approaches
based on the minimization of the ¢;-norm are recognized for
their greater robustness against outliers when compared to the
{o-norm [5], in more severe scenarios, characterized by a-
stable noise with o < 1, the minimization criterion based on
the ¢1-norm loses statistical support, since the moment of order
one of the adjustment errors (residuals) becomes undefined in
this scenario [4]. In this context, cost functions associated with
the quasi-norm /£, with p < 1 become an attractive alternative,
providing greater tolerance to large residuals and favoring
the robustness of reflectivity estimation in more impulsive
environments [4]. This work proposes applying this strategy
for seismic deconvolution, investigating its performance in
data contaminated by «-stable noise, a scenario of practical
interest and still little explored in the specific literature of the
area.

Furthermore, considering that seismic reflectivity is as-
sumed to be sparse, this work adopts a regularization term
based on the ¢;-norm to favor more adequate sparse solu-
tions. The combination of a robust cost function, suitable
for environments with impulsive noise, with an ¢;-norm-
based regularization that promotes sparsity, configures a de-
sirable strategy for the problem of seismic deconvolution
in environments with impulsive noise modeled by «-stable
distributions. Additionally, this work investigates the impact of
the parameter p on the robustness of methods based on the ¢,
quasi-norm, considering different levels of noise impulsivity.
This analysis seeks to fill a gap in the literature, where the
adjustment of p is typically performed in a fixed or empirical
manner, without considering the statistical characteristics of
the noise in the data.

II. SEISMIC DATA MODELING

In reflection seismic, the recorded signals can be described
by the convolutional model, that considering the representation
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in discrete time, the seismic trace is given by:

L
Ty = Wp * Ty + Uy = E TeWpn—g + Un, (D
£=0

where n represents the discrete time index, w,, represents the
signal emitted by the seismic source, also known as the seismic
wavelet, r, is the reflectivity function of the subsurface, and
v, corresponds to additive noise, which models environmental
disturbances and uncertainties in data acquisition.

This model can also be expressed in matrix form as follows:

x=Wr+v, (2

where x € R denotes the observed seismic trace, modeled as
a column vector of length N, r € RY denotes the subsurface
reflectivity, whose entries r; correspond to local impedance
contrasts, v € RY denote the additive noise vector affecting
the observed seismic data, and W € RN*N denote the
convolution matrix constructed from the source wavelet w,,,
given by:

wp 0 0 -+ 0
w; wo 0 0
W = wy w1 Wy - 0
0 0 0 wWol vy

An essential aspect in this context is the proper treatment of
the noise vector v. Traditionally, it is assumed that the noise
can be modeled by a Gaussian distribution, an assumption
justified by the central limit theorem and valid in several
practical scenarios.

However, the seismic data acquisition can take place both
onshore and offshore, and in either setting, the recorded data
are often contaminated by non-Gaussian noise. There is grow-
ing evidence that the seismic environment may deviate from
Gaussian behaviour [2], particularly in marine settings [6]. In
such cases, more flexible models are preferable, such as the
generalized Gaussian distribution or the a-stable distribution,
which includes the Gaussian as a particular case. The latter
model will be discussed in more detail below.

III. ALPHA-STABLE DISTRIBUTIONS

a-stable distributions are often used in statistical modeling
of non-Gaussian signal sources. Their theoretical foundation
lies in the generalized central limit theorem and the stability
property, which make them applicable in a wide range of
scenarios. The generalized central limit theorem states that,
under suitable normalization, the sum of a large number of in-
dependent and identically distributed (i.i.d.) random variables,
with or without finite variance, converges in distribution to
an «-stable law. The second defining feature is the stability
property: a-stable distributions are closed under convolution,
i.e., the sum of two independent random variables with the
same characteristic exponent is also «-stable and preserves
that exponent [4].

There are different parametrizations of a-stable distribu-
tions, each based on a distinct form of the characteristic

Fig. 1: Probability distribution function of symmetrical a-
stable with S =6 =0 and v = 1.

function. In this work, it is considered the parameterization
0. = (o, 8,7, 0) and the following characteristic function [4]:

P(w; 0a) = exp(—7*|w|*[1 = jO(w; o, B)] + jdw),  (3)
with
B(tan 5*)(sign w),

© :{ ~B2(Inw]),

where « is the characteristic exponent such that 0 < o < 2,
[ is the symmetry parameter such that —1 < § <1, y is the
dispersion or scale parameter such that v > 0, § is the location
parameter such that —oo < § < oo.

Figure 1 shows the variation of the « parameter versus the
corresponding random variable that reflects the impulsiveness
level of the distribution. Lower values of « indicate higher
impulsiveness and more pronounced non-Gaussian behavior,
while higher values suggest that the distribution is closer to
the Gaussian case; specifically, a« = 2 corresponds to the
Gaussian distribution. Another important property concerns
the existence of statistical moments. A non-Gaussian a-stable
random variable has finite moments of order p only when
0 < p < a, thus for a non-Gaussian «-stable random variable
X, this property implies [7]:

a#1

a=1,

4)

E{|X]P}=o0,ifp>« )

and
E{|X|P} <00, if0<p<a. (6)

It is important to note that the Gaussian distribution is a
particular case of an a-stable distribution with o = 2. Unlike
the general «-stable case, it has finite moments of all orders,
i.e.,

E{|X|’} < oo, for all p > 0. @)

This feature helps explain why certain statistical moments
perform better than others as cost functions in specific environ-
ments, and highlights that the assumed probability distribution
of the dataset is closely related to the choice of cost function.

In this work, we explore the parameterization of a cost
function defined by the ¢,-norm in scenarios where p < o,
including values of p less than one, in order to demonstrate
the versatility of this parameter in handling different types of
noisy data, as will be illustrated in Section V.
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IV. ¢, NORM DECONVOLUTION

The ¢,-norm is a metric of size or distance, it generalizes
the idea of length to spaces of arbitrary dimension and to
functions, with a parameter p, which can take any positive
value 1 < p < oo [9], if it takes on a value in the interval
0 < p < 1, this metric ceases to be a norm and becomes a
quasi-norm [10], but it can still be used to describe statistical
moments of lower fractional order.

The ¢, norm of any discrete-time signal x[n| is given by
the expression:

1
P

N
llllp = | Y lanl? ®)

n=1

This expression includes several norms used in other areas,
for example when p = 2, it is called the Euclidean norm, often
used in analytical geometry and as a cost function in various
applications in Gaussian environments. In contrast, when p =
1, the ¢1-norm presents itself as a widely used cost function
and exhibits robustness to various types of noise, including
impulsive noise.

However, as noted above, for values of the o parameter of
the a—stable distribution smaller than one, it is possible to
see that the /1-norm faces difficulties, and this is where the
¢, norm comes in, where the parameter p can even take on
fractional values, including information on statistical moments
of fractional order in the error modeling, and for this case
when p < 1.

In the seismic context, from the convolution equation, we
can define as a cost function the £,-norm of the error between
the observed seismic trace x and the convolutional modeled
seismic trace X. The objective is to minimize the error between
the modeled data and the observed data, given by:

e=x-—X. 9
The cost function for this problem can be written as:
1 1Nl
To(r) = ~|lells == [wn — &l (10)
p p n=0

However, since the deconvolution problem by estimation is
poorly posed — that is, it can admit multiple solutions for
the same observed seismic trace —, it becomes necessary to
impose restrictions or incorporate a priori information about
reflectivity, the parameter on which we want to optimize the
model.

In this context, assuming that reflectivity is a sparse signal,
whose amplitudes correspond to abrupt transitions between
geological interfaces, it is possible to obtain more adequate
solutions to the deconvolution problem through regularization,
as done by [8].

In this case, the regularization factor can be defined by
applying the norm ¢; on the reflectivity vector weighted by
the penalty factor A\ which can adjust how sparse the estimated
term will be. Thus, the regularized cost function is now defined
as:

1
Je) = Jllelly + Allrll. (1)

Once the cost function has been defined, the next step
is to minimize it in relation to reflectivity. To do this, the
gradient descent algorithm can be applied, which requires the
calculation of the partial derivatives of the cost function for
each reflectivity coefficient. Considering, for example, the i-th
term:

5 N-1
877“[](1.) =— ; Wn—i€p, + Asgn(r;), (12)

where e, = |2, — &, [P~ sgn(x, — iy ), that can be combined
to form a matrix representation of the cost function gradient:
0J(r)

Or
In this way, at each iteration, the application of the gradient

descent method allows the batch update of the entire reflec-
tivity vector:

= -WTe, + Asgn(r). (13)

k+1 k

rF = b (- WTep, + Asgn(r?)). (14)

Equation (14) seeks, therefore, to iteratively adjust the
reflectivity coefficients, balancing the minimization of the
reconstruction error with the imposition of sparsity, controlled
by the parameter A. Furthermore, the update step — also
known as learning rate — is regulated by p.

V. RESULTS AND DISCUSSION

In this section, we investigate the performance of the
proposed deconvolution method, formulated as an optimization
problem based on the minimization of the ¢, quasi-norm. The
goal is to assess how well the method performs in estimating
sparse reflectivity when the seismic trace is contaminated with
impulsive noise modeled by «-stable distributions, and to
analyze how its effectiveness varies with different values of
the parameter p.

A. Experiment 1

The first experiment considers a reflectivity signal composed
of a very sparse sequence with non-zero coefficients at specific
positions, as shown in Fig. 2a. The synthetic seismic trace is
generated via the convolution of this reflectivity signal with a
Ricker wavelet of central frequency fo = 25 Hz and length
L = 51 samples, which models the source signal (Fig. 2b). The
additive noise generated from an «-stable distribution (with
a=0.8,8=0=4¢ and v = 0.05) is then added to the trace
(Fig. 2c¢).

The deconvolution is carried out by solving the proposed
optimization problem for three representative values of the
parameter p: 2, 1, and 0.6, assuming that the wavelet is known.
These values were selected to illustrate the behavior of the
method under impulsive noise conditions. The corresponding
estimated reflectivity results are visually compared to the
original reflectivity in Figs. 3a—3c.

For p = 2 (i.e., the /5-norm) the method fails to estimate
any reflector accurately and exhibits instability with oscil-
latory artifacts, highlighting the inadequacy of the /{s-norm
in impulsive noise environments. For p = 1, the estimated
reflectivity is considerably improved and aligns with the true
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Fig. 2: (a) Reflectivity, (b) seismic trace, (c) and seismic trace
added with «-stable noise with & = 0.8, 5 = 0 = ¢ and
v = 0.05.

signal, although one of the main reflectors, highlighted by
the red ellipse, is underestimated in amplitude. In contrast,
the result obtained with p = 0.6 provides the best match to
the original reflectivity, accurately capturing both the location
and amplitude of all reflectors. Notably, the reflector that was
underestimated with the /;-based estimation is fully recovered
when using p = 0.6.

B. Experiment 2

To further evaluate the proposed method, we consider a
second synthetic reflectivity model representing a more com-
plex subsurface, composed of multiple reflectors, some of
which are closely spaced (Fig. 4a). In this simulation, the
seismic trace was generated by convolving the reflectivity with
a Ricker wavelet of central frequency fy = 40 Hz (Fig. 4b),
followed by the addition of noise generated from an «-stable
distribution with a = 0.6 and v = 0.02 (Fig. 4¢). This scenario
poses a significantly greater challenge for accurate reflectivity
estimation.

As shown in Fig. 5, the result obtained with the ¢ norm
fails to identify any reflectors, once again demonstrating its
sensitivity to impulsive noise. The estimation with the ¢; norm
is partially successful: approximately half of the reflectors are
correctly localized, but only two are estimated with accurate
amplitude. Additionally, several spurious peaks are detected,
resulting in false positives.
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Fig. 3: (a) Estimated reflectivity for p = 2 (A = 5), (b)
estimated reflectivity for p = 1 (A = 5), and estimated
reflectivity for p = 0.6 (A = 8). For all simulations were
considered n = 1000, and p = 0.01.

In contrast, the result for p = 0.4 achieves a considerably
better reconstruction. Most of the true reflectors are correctly
identified in both position and amplitude. Out of 14 actual
reflection events, 11 are correctly estimated, and few false
positives are observed.

C. Statistical Analysis

To show the robustness of this method, a statistical analysis
(Monte Carlo simulations) was developed using the Pearson
correlation coefficient p as a performance metric to compare
the deconvolution of the seismic trace of Experiment 1 (illus-
trated by Fig. 2b), with 20 different realizations of the additive
noise generated from an «-stable distribution, for different
values of p in the interval 0.1 < p < 2 (with a step 0.1). The
box-plot of the Pearson correlation coefficient for each tested
value of p is shown in Fig. 6. It can be observed that the values
of p between 0.3 and 0.7 improve estimation consistency, with
higher median correlation and lower dispersion. This behavior
supports the hypothesis that ¢, quasi-norms with p < 1 offer
advantages in impulsive noise scenarios.

VI. CONCLUSION
In this paper, was proposed the usage of the £,-norm, with
p < 1, for the deconvolution of sparse signals in a non-
Gaussian environment, modeled by the a-stable distribution.
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Fig. 4: (a) Reflectivity, (b) seismic trace, (c) and seismic trace
added with «-stable noise with « = 0.6, 5 = 0 = § and
v = 0.02.

We have seen that, even when the impulsiveness of the additive
noise is very high, the use of the £,-norm with p < 1 provides
a better solution than the traditional ¢;1-norm, which results in
a gain in resolution.

In future works, we want to study the usage of the ¢,-norm
for regularization and also explore it in blind deconvolution
problems in which both the reflectivity series and the wavelet
must be estimated.
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