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A Hypergraph-Based Alternative to Convolutional
Layer in Image Classification Models

Eronides Felisberto da Silva Neto and Juliano B. Lima

Abstract— Hypergraph modeling has emerged as an effective
approach for representing data by capturing higher-order rela-
tionships among multiple data instances. Recent methods utilizing
hypergraphs demonstrate applications in signal processing such
as image denoising, compression and spectral clustering. To
perform learning tasks on hypergraph representation of image
data, hypergraph neural networks have been introduced to
enhance performance. This paper explores the effectiveness of
hypergraph signal representations as input features for neural
network-based image classification models. The results show that
a mixed hypergraph network achieves performance comparable
to traditional convolutional neural networks, while requiring less
computation, as evidenced by shorter training time.
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I. INTRODUCTION

Large volumes of data (big data) generated by Internet
of Things (IoT) devices, social media interactions, and traf-
fic patterns can exhibit complex structures, making it chal-
lenging to apply traditional data analysis techniques [1]. In
this context, graph-based representations have emerged as a
powerful paradigm for modeling and interpreting such data.
Graphs provide a flexible and expressive framework capable of
capturing diverse relationships, including device interactions,
network topologies, and information flows, thereby facilitating
the identification of meaningful patterns and insights [2].

While graphs enable the modeling of novel structures and
relationships among device connections—often resulting in
matrix-based analyses—algebraic operations within these rep-
resentations become inefficient when capturing interactions
beyond pairwise connections. To address the limitations of tra-
ditional graphs in modeling higher-order interactions (HOIs),
hypergraphs have been introduced as a more expressive frame-
work for representing complex signal interactions [3], [4].

In the context of data generated by IoT applications, hyper-
graphs offer a powerful framework for modeling data struc-
tures such as time series, images, and multidimensional arrays
[5]. By employing tensor-based representations, hypergraphs
enable the analysis of multi-relational data, capturing refined
relationships and interactions that extend beyond pairwise
relationships. To facilitate efficient data and spectral analysis,
hypergraph signal processing (HGSP) frameworks [3], [4], [6]
extends classical signal processing tools to accommodate the
rich and intricate relationships captured by hypergraphs.

Recent research has also explored the intersection between
HGSP operations and the development of hypergraph neu-
ral networks (HGNN) architectures, aiming to leverage the
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spectral properties of hypergraphs to enable learning tasks
[7]. Furthermore, recent surveys have provided comprehensive
overviews of HGNN architectures, training methodologies,
and their diverse applications [8].

Considering the potential of hypergraph modeling for repre-
senting images [9] by incorporating spatial information, recent
research has explored the integration of such representations in
various image processing tasks, including image classification
[10] and segmentation [11]. This approach establishes a foun-
dation for applying hypergraph-based representations in deep
learning frameworks. In particular, HGNNs can offer a promis-
ing avenue for analyzing and improving the performance of
image classification models by incorporating HOIs within the
structured data.

In this paper, we propose a hypergraph signal repre-
sentations as input features for neural network-based im-
age classification models. Specifically, we assess the perfor-
mance of two mixed HGNN architectures on the MNIST
and Fashion-MNIST (FMNIST) datasets. The proposed ap-
proach is benchmarked against conventional convolutional
neural network (CNN) models to compare classification per-
formance and highlight the potential advantages of incorpo-
rating hypergraph-based representations.

This paper is organized as follows. In Section II, we summa-
rize the theoretical foundations of hypergraphs, HGSP based
on tensor operations and HGNNs. Section III describes the
methodology proposed to the evaluation of mixed HGNNs and
CNNs. In section IV, we discuss the results of the evaluation.
Finally, Section V brings the conclusions.

II. PRELIMINARIES

A. Hypergrah Basics

In a nutshell, a undirected hypergraph is defined as a pair
H = (V, ε), where V = {v1, ..., vN} is a set of nodes and ε =
{e1, ..., eK} a set of hyperedges. The concept of hyperedges
extends the edge concept, being possible to connect more
than two nodes (vertices), capturing relationships involving
more than two entities. The parameter that summarizes the
difference between a graph and a hypergraph is the maximum
cardinality of a hyperedge, defined as M = m.c.e.(H) =
max {|ei| : ei ∈ ε}, being a graph a special case when M = 2.
Another particular case is the k-uniform hypergraph, where
each hyperedge connects exactly k vertices, meaning all
hyperedges have the same cardinality. Figure 1 illustrates the
process of constructing a hypergraph from an image.

The mathematical representation of hypergraphs are gener-
ally representend by an incidence matrix H ∈ {0, 1}|V|×|E|.
Extending the concept of graphs, and considering the higher
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Fig. 1. a) illustrate the representation of an image by a hypergraph based on
each pixel being a node and b) the hyperedges creation based on proximity
of pixels neighborhood.

order interactions, a k-uniform hypergraph H = (V, ε) can also
be represented by an adjacency tensor, considering N nodes
and M , being represented by an M -th order, N -dimensional
adjacency tensor A ∈ RNM

. The last generalization from
graph theory is the concept of Laplacian tensor, also applied
exclusively to k-uniform hypergraphs. Considering D as an
M -th order N -dimensional super-diagonal tensor with non-
zero entries, calculated from the degrees of H, the Laplacian
tensor is defined as

L = D −A ∈ RNM

. (1)

Different from adjacency tensor that encodes the presence
of hyperedges for structural modeling, the Laplacian tensor
provides an way to encode the hypergraph structure and
spectral properties.

B. Hypergraph Signal Processing

Hypergraph signal processing extends graph signal pro-
cessing (GSP) by capturing higher-order relationships beyond
pairwise interactions. Among the earliest studies, Zhang et al.
[4] proposed an HGSP framework with applications in spectral
clustering, data compression, and signal denoising. While
theoretically grounded and supported by practical examples,
the approach has limitations—most notably, its reliance on
the orthogonal decomposition of the adjacency tensor via the
CANDECOMP/PARAFAC (CP) method [12], which lacks an
exact solution.

As an alternative, Pena-Pena et al. [6] proposed a novel
HGSP framework based on the tensor-tensor product (t-
product) algebra, which has demonstrated effectiveness in pre-
serving the intrinsic structure of tensor data. Considering two
third-order tensors, A ∈ RN1×N2×N3 and B ∈ RN2×N4×N3 ,
the t-product is defined by

C = A ∗ B, (2)

with C ∈ RN1×N4×N3 calculated as

C = fold(bcirc(A) · unfold(B)). (3)

The operator bcirc(A) maps the frontal slices of the tensor
A into a block circulant matrix. Similarly, the unfold(B)

operator stacks the frontal slices of the tensor B vertically,
resulting in a matrix of dimensions N2N3 ×N4 . The fold()
and unfold() operators are mutually inverse. Given that the
core principles of HGSP are founded on the t-product algebra,
we now proceed with the relevant definitions.

Hypergraph signal: considering the framework [6], a pos-
sible representation of a hypergraph signal from a one dimen-
sional signal is defined as an (M − 1)-order, N -dimensional
tensor X , computed as the outer product of the original signal
on the hypergraph x =

[
x1 x2 ... xN

]T
, that is

X = x ◦ ... ◦ x. (4)

With the objective of representating in higher-order dimen-
sions, the hypergraph signal can be expanded to a second
dimension and adjusted to a symmetric version to be integrated
to the tensor product framework. This is represented by

−→
X s = sym(expand(X )), (5)

with
−→
X s ∈ RN×1×2N+1. In addition to one-dimensional

signals, hypergraph signals can be also created from a set of
signals [6]. Considering a signal X ∈ RN×L, it is possible to
associate L one-dimensional signals with the hypergraph in a
direct way.

Hypergraph shifiting and filtering are fundamental opera-
tions in signal processing, enabling key functionalities such as
time delay, sampling, signal reconstruction, and convolution.
Analogously to its role in GSP, the shift operation in HGSP
(Fs) is generalized to encompass any operator that captures
the relational dependencies among nodes in a hypergraph. In
this context, both the adjacency tensor A and the Laplacian
tensor L can be employed as shift operators.

Based on the previous definitions for a hypergraph signal
(5), the one-time filtered hypergraph signal is calculated by

−→
Ys = Fs ∗

−→
Xs. (6)

Hypergraph filtering extends hypergraph shifting by ma-
nipulating hypergraph signals via linear transformations. The
filtering operation follows the same formulation as (6), with
the shifting operator replaced by the filter representation Qs.

C. Hypergrah neural networks

Convolutional neural networks are a class of deep learning
algorithms inspired by the organization of the human brain
and the concept of artificial neurons. CNNs consist of multiple
layers of interconnected units that automatically and adaptively
learn spatial hierarchies of features from input data. Through
the use of convolutional operations, they effectively capture
local patterns, making them particularly well-suited for tasks
involving image and signal processing. Mathematically, a
neural network can be represented as a mathematical function
that maps a set of inputs to an output [13],

y = f (x , θ) , (7)

where θ denotes the set of trainable parameters, comprising
both weights and biases.
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Hypergraph neural networks are a class of neural networks
designed to perform learning tasks on data represented as
hypergraphs, enabling the modeling of HOIs. Considering the
variety of data structured as hypergraphs, various HGNNs
approaches are designed to meet specific applications require-
ments [10], [14], [15]. According to Wang et al. [16], a
HGNN learns a representation mapping fθ that combines node
features X and the hypergraph descriptor, utilizing either a
tensor shifting operator F or matrix-based approaches, such
as the incidence matrix H.

With the purpose of working with tensor based operations,
the direct analogue representation of hypergraph computation
operations, based on HGNNs is represented by

y = fθ (Xs,Fs) (8)

where fθ is a mathematical function based on calculation and
modeling based on vertices or hyperedges.

From the perspective of HGSP operations, [7] provides a
unified view of the HGNN architecture, which is constructed
around two fundamental operations: signal transformation and
signal shifting. Additionally, the work introduces an HGNN
architecture that is equivalent to a tensor-based hypergraph
signal denoising operation. In addition to approaches that
rely solely on tensor-based operations and representations,
some network proposals use weighted fusion hypergraphs and
regular neural network layers operations [14].

Leveraging the flexibility of hypergraph representations for
diverse data types, HGNN architectures construction allows
the integration of HGSP operations with conventional convo-
lutional neural network layers within a unified architecture,
enabling more flexible and powerful architectures.

III. EVALUATING IMAGE CLASSIFICATION MODELS BASED
ON HYPERGRAPH SIGNALS

The application of classification models to images is a
fundamental task in the field of computer vision, involving the
assignment of a semantic label to an image based on its visual
characteristics. This paper proposes the use of hypergraph
signal representations as input features for image classification
models based on neural networks. Specifically, the proposed
approach involves constructing a mixed HGNN that integrates
hypergraph structural representations with traditional neural
network layers, replacing conventional convolutional layers
with hypergraph-based signal processing and representation.
To evaluate the proposed mixed HGNN with tensor based
hypergraph signal, accuracy is adopted as the performance
metric due to its intuitive interpretation and ease of comparison
across models.

Datasets. Standard benchmark datasets for grayscale image
classification, such as MNIST, and FMNIST, are employed to
evaluate and conduct a comparative analysis of image classi-
fication models, using the proposed mixed HGNN approach.
The MNIST dataset comprises grayscale images of handwrit-
ten digits and is commonly used as a foundational benchmark
for evaluating basic image classification algorithms. In con-
trast, the Fashion-MNIST dataset offers a more challenging

alternative by presenting grayscale images of various clothing
items, thereby introducing greater intra-class variability.

Hypergraph signal creation. Instead of using the original
image representation as the input of neural networks, this work
proposes a representation of each image as a hypergraph signal
defined within the t-product framework. Each image is first
resized to 16 × 16 pixels and then partitioned into four non-
overlapping 4 × 4 blocks. For each of these blocks, a hyper-
graph can be constructed following the methodology presented
in [9], where each pixel is treated as a node. As a result, each
block yields an associated hypergraph and a corresponding
hypergraph signal. The hypergraph signal is defined as a one-
dimensional array of length 16, under the assumption that this
signal exhibits smoothness over the hypergraph structure (with
N = 16) derived from the respective image block.

For each original image from the respective dataset, repre-
sented as hypergraphs, a hypergraph signal

−→
Xs ∈ R16×1×33 is

associated as a representation of high-order interactions. Com-
pared to both the original image representation and hypergraph
signal formulations based on N = 256, the approach proposed
in this work, using a hypergraph constructed from 4×4 image
blocks (N = 16), offers improved computational efficiency
while maintaining meaningful structural information.

Mixed hypergraph neural network architectures. To
evaluate the performance of hypergraph signal representations
as feature vectors within neural network architectures, this
study proposes two distinct mixed HGNN architectures:

• Simple mixed HGNN (SM-HGNN): a network that
receives the hypergraph signal (16 × 1 × 33) as input,
the first layer is a channel expansion, followed by a 2×2
max-pooling layer, followed by a batch normalization
layer. The feature maps are then flattened and passed
through two fully connected layers, the first with 256
units followed by 128 units and dropout (rate = 0.1),
before a final softmax output layer for classification into
10 categories.

• Simple mixed HGNN with denoising (SMD-HGNN):
as same as the previous network, but with a denoising
layer before the channel expansion, as shown on Fig. 2.

The filtering operation incorporated in SMD-HGNN in-
volves a denoising operation implemented within the t-product
framework. Despite the datasets used in this evaluation are
relatively clean, some imagens can still exhibit pixel-level
variations or artifacts due to preprocessing. As introduced in
the previous section, the equation for a filtering process is
exactly the same as (6) with the operator replaced by the
filter representation Qs, which is constructed through hard-
thresholding of the spectral coefficients λc

Qs[l, l, k] =

{
1, if λl ≤ λc

0, otherwise, (9)

where l = 1, 2, ..., N and k = 1, 2, ..., 2N + 1. The cut-off
frequency used in the architecture design is λc = 0.10×N .

Experimental setup and benchmarks evaluation with
CNNs. The construction and evaluation of each neural net-
work model follow a holdout validation procedure, where the
dataset is randomly partitioned into 80% for training and 20%
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Fig. 2. Architecture overview of the proposed mixed HGNN with hypergraph signal denoising.

for testing. The supervised training is conducted using the
backpropagation algorithm over 10 epochs, optimized using
the Adam optimizer with a learning rate of 0.01. A softmax
activation function is applied at the output layer, and the
negative log-likelihood loss is used as the training criterion. To
ensure the robustness and reliability of the results, this process
is repeated across 35 independent runs, each with a distinct
random seed uniformly sampled between 0 and 8675309. This
repeated evaluation allows for assessing the consistency of the
model’s performance under varying data splits.

As a benchmark dataset for image classification, MNIST
provides up-to-date comparisons of state-of-the-art methods,
facilitating performance evaluation across a wide range of
models [17]. The CNN models chosen for evaluation in this
work, with layers detailed on Table I, were selected based
on their architectural implementation with the inclusion of
convolutional layers, which are essential for a meaningful
comparison with the proposed HOIs representation derived
from hypergraph signal representation. Additionally, both se-
lected CNN architectures are well-suited for image classifica-
tion tasks on the MNIST and FMNIST [18] datasets, ensuring
consistency and comparability across experiments.

TABLE I
LAYER COMPARISON BETWEEN 1-LAYER CNN AND VGG16 H-CNN

Model Layers Model Layers

1-layer CNN

Convolutional Layer
(kernel=3, padding=1)

MaxPool2d (2x2)
Fully Connected 1
Fully Connected 2

VGG16 H-CNN

Conv Layer (3x3, pad=1)
ReLU

Conv Layer (3x3, pad=1)
ReLU

MaxPool2d (2x2)
(Repeating this block three times)

Fully Connected 1
Fully Connected 2

All CNNs and mixed HGNNs were implemented in Python
(version 3.10.12) using the PyTorch deep learning framework
(version 2.6). The experiments were conducted on a machine
equipped with an 11th Gen Intel® Core™ i5-1135G7 pro-
cessor running at 2.40GHz with 8 logical cores. This setup
provided sufficient computational resources for training and
evaluating the proposed models efficiently. In addition to the
accuracy metric, the training time is recorded for each run.

IV. RESULTS AND DISCUSSION

Table II summarizes the experimental results obtained for
the evaluated models on the selected datasets, presenting
the classification accuracy for each configuration. As shown
in Table II, VGG16 H-CNN [19], a hierarchical CNN de-
signed for image classification, featuring a consistent 16-layer
structure with convolutional blocks followed by max-pooling
for spatial reduction, achieved the highest average accuracy
among all evaluated models for both datasets, while SM-
HGNN demonstrated a result close to the best model, with
lower computational complexity based on the required training
time to create the model. For the MNIST dataset, a direct
comparison between the 1-layer convolutional CNN and the
SMD-HGNN yields comparable results in terms of accuracy.
However, the SMD-HGNN demonstrates a clear advantage in
computational efficiency, requiring on average approximately
35.33 seconds to construct the model, compared to 966.56
seconds for VGG16.

To determine whether statistically significant differences
in accuracy exist among the four models evaluated for each
dataset, the Kruskal–Wallis hypothesis test was applied [20].
This non-parametric method is appropriate for comparing
accuracy distributions across multiple independent groups,
particularly when the assumption of normality is not satisfied.
The results for the MNIST dataset indicated the presence of a
model whose performance differed significantly from that of
the other models.

To identify which specific models differed significantly and
which exhibited statistically equivalent performance, a post-
hoc Dunn’s test with Bonferroni correction was subsequently
performed. The results of the pairwise comparisons confirmed
that the VGG16 H-CNN model outperformed the others with
statistically significant differences in both datasets. Moreover,
no significant difference was found between the CNN and
SMD-HGNN models, indicating statistically equivalent per-
formance between them.

Applying the same methodology to the FMNIST dataset re-
vealed that the pairwise comparisons indicated all models were
statistically different from one another. Unlike MNIST, the
denoising layer SMD-HGNN failed to significantly improve
the model, likely due to the increased visual complexity and
finer-grained object details present in FMNIST images, which
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TABLE II
SUMMARY OF CLASSIFICATION ACCURACY AND TRAINNING TIME FOR EVALUATED MODELS

Model MNIST Fashion MNIST
Accuracy Training Time (s) Accuracy Training Time (s)

CNN 0.9812 ± 0.0017 54.97 ± 4.24 0.8957 ± 0.0041 70.67 ± 4.60
VGG16 H-CNN 0.9882 ± 0.0028 966.56 ± 23.53 0.9089 ± 0.0039 936.93 ± 30.67

SM-HGNN 0.9770 ± 0.0016 30.18 ± 1.30 0.8813 ± 0.0034 31.5349 ± 0.20
SMD-HGNN 0.9813 ± 0.0014 35.33 ± 5.23 0.8874 ± 0.0036 33.8883 ± 3.19

may limit the effectiveness of the smoothing mechanism.

V. CONCLUSION AND FUTURE WORKS

The most significant finding of this study is the demon-
stration that a traditional CNN with a convolutional layer
can be effectively replaced by a network with a hypergraph
signal representation based on the t-product framework. From
a broader perspective, considering both computational effort
and classification accuracy, the results indicate that the SMD-
HGNN architecture achieves performance comparable to that
of a purely convolutional model. This result is achieved with
greater computational efficiency, as the model does not rely on
traditional convolutional layers. These findings highlight the
potential of hypergraph-based approaches as viable alternatives
in image classification tasks.

Regarding the network architecture proposed by the mixed
HGNNs, the input data are represented using the t-product
HGSP framework, which enables block circulant interactions
across slices of the tensor and captures multi-dimensional,
higher-order relationships that are not accessible through
conventional matrix-based transformations [6]. Despite the
demonstrated effectiveness of this hypergraph signal represen-
tation, further refinement of signal transformation techniques
may enhance the performance of the proposed architectures
and support the adaptation of additional CNN models for
extended evaluation. Moreover, the development of special-
ized transformation and shifting blocks within HGNNs could
enable the construction of equivalent representations for more
complex convolutional structures, facilitating a more com-
prehensive and rigorous comparison across different network
architectures.

As a continuation of this work, future research could focus
on the design of a specialized HGNN architecture built en-
tirely on tensor operations derived from the t-product HGSP
framework. This approach would further refine the current
evaluation and open new possibilities for improving perfor-
mance. Moreover, enhancing the methodology for hypergraph
construction from image data and exploring more sophisticated
transformation and shifting operations could provide deeper
insights into optimizing mixed architectures for image classi-
fication tasks.
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