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Efficient Methods for Selective Classification under
Balanced Error Rate
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Abstract— Deploying deep learning models in safety-critical
tasks, like medical diagnosis, demands classifiers that can abstain
from high-uncertainty samples to mitigate errors, which are
known as selective classifiers. However, while these tasks often
exhibit class imbalance, most existing approaches are based on
conventional metrics such as accuracy, which are unsuited for
imbalanced data. Recent work has proposed an algorithm that
minimizes the balanced error rate, which is an appropriate metric
for this case. Yet, their solution presents high complexity and
suffers from poor scalability, restricting the application range due
to computational costs. This work establishes sufficient conditions
for an optimal selective classifier under the balanced error rate
and proposes three novel methods that are fast and highly
scalable. Experimental results show that the methods match or
outperform the state-of-the-art algorithm on synthetic and real-
world imbalanced datasets.

Keywords— Machine Learning, Deep Learning, Imbalanced
Data, Uncertainty Estimation, Selective Classification.

I. INTRODUCTION

Deep learning models are well-established across numerous
areas in industry and research [1], [2]. However, some of
these areas concern safety-critical applications where a bad
decision can lead to harmful consequences, such as a wrong
medical diagnosis in the health field. Therefore, to safeguard
against critical errors, it is important to endow classifiers
with the option to reject samples when their prediction is
not trustworthy. Selective Classification (SC), also known as
classification with a reject option, allows this by trading off
coverage, i.e., the proportion of predictions that are accepted,
and selective risk, i.e., the performance obtained by the model
over the accepted predictions.

Earlier works have addressed this problem by assigning
explicit rejection costs [3]–[5]. The issue with this approach is
that defining rejection costs can be difficult, especially when
the consequences of a wrong decision are hard to quantify,
such as in medical diagnosis. To avoid this, other authors
tackle the problem by trading off risk and coverage directly as
in [6], [7], where [6] derives an algorithm with a guaranteed
desired risk level, while in [7] the goal is to enhance the
uncertainty estimation. Our work follows the second approach
due to its value in real-world applications.

In these safety-critical scenarios, one chronic problem is
that the datasets often come with imbalanced classes, i.e., one
class might be underrepresented, which yields models with
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poor performance in the minority classes, as showcased in
[8]. On top of that, in the literature of selective classification
[6], [7], [9], the papers usually focus on standard metrics such
as the accuracy, which is unsuitable to deal with imbalanced
data. To the best of our knowledge, the only exception is the
work of [5], which takes into account suitable metrics to deal
with imbalanced data, namely, the Balanced Error Rate (BER),
and the Worst Group Error. The authors show that solutions
designed for accuracy present suboptimal performance in BER
scenarios and then derive an algorithm called CS-Plugin to
address SC under the BER metric in long-tail distributions,
which yields better performance. Nevertheless, their algorithm
requires a hyperparameter search over RK (with K being
the number of classes), resulting in substantial computational
complexity and poor scalability; moreover, its performance is
quite sensitive to the grid over which the search is performed.
Even in a binary scenario, i.e., with K = 2 (and applying the
reparametrization proposed in [5], which reduces the search to
a single hyperparameter in R), using a sufficiently large grid
makes the algorithm significantly slow.

Addressing the gaps in the literature discussed above, this
work introduces three novel algorithms for SC under the BER
metric. These algorithms are applicable to any probabilistic
machine learning classifier without requiring retraining and
are derived from sufficient conditions for an optimal selective
classifier for the BER, which we establish in this work. The
results showcased here illustrate that our methods achieve
competitive performance compared to the one in [5], even
outperforming it in some scenarios, with the advantage of
being faster, easier to tune, and highly scalable.

In summary, we make the following key contributions in
this paper:

• We make theoretical contributions to the field of SC
by deriving sufficient conditions for an optimal selective
BER classifier;

• We propose three simple but effective methods for dealing
with SC under BER that are fast, highly scalable, and easy
to tune;

• We display several tests performed over synthetic and real
data to illustrate a variety of scenarios under imbalanced
settings, showing that one of our algorithms always
matches or outperforms the state-of-the-art (SOTA) so-
lution in [5], while another of our algorithms, in certain
scenarios, can outperform both of them.

II. BACKGROUND

A. Classification
Consider the problem of classification with K classes. Let

X = Rn be the feature space and Y = {1, 2, ...,K} be the
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label space. Let X ∈ X and Y ∈ Y be random variables
with a (potentially unknown) distribution pX,Y . A classifier is
a prediction function h : X → Y . The risk of a classifier is
defined as R(h) ≜ E [L(Y, h(X))], where L : Y × Y → R+

is a given loss1 function.
The arguably most used loss function is the so-called 0/1

loss, defined as

L0/1(Y, h(X)) ≜ 1[h(X) ̸= Y ], (1)

where 1 is the indicator function. In this case, the correspond-
ing risk R(h) = P [h(X) ̸= Y ] is known as the error rate
(and 1 − R(h) is the accuracy). The Bayes optimal classifier
minimizing this risk is the well-known Maximum a Posteriori
(MAP) classifier [10], given by

hMAP(x) ≜ argmax
y∈Y

P [Y = y | X = x]. (2)

Since pX,Y is generally unknown, machine learning models
are trained to estimate the posterior probability pY |X and this
estimate is used in (2). Whenever an estimate of a probability
is used in place of the true one in an optimal expression, this
is called a plug-in approach.

B. Selective Classification
A selective classifier [6] is a pair (h, s), where h is a

classifier and s : X → {0, 1} is a selection function. When a
selective classifier is applied to an input x ∈ X , the prediction
h(x) is accepted if s(x) = 1, otherwise the prediction is
rejected. A selective classifier’s coverage, ϕ(s) = E[s(X)],
is the proportion of accepted predictions and its selective risk,
R(h, s) = E [L(Y, h(X)) | s(X) = 1], is the risk it incurs
over the accepted predictions. Note that the conventional risk
is equal to the selective risk when ϕ(s) = 1.

Without loss of generality, we assume s(x) = 1[g(x) ≥ t],
where g : X → R is a confidence estimator, which quantifies
the model’s confidence on each prediction, and t ∈ R is an
acceptance threshold. Thus, a selective classifier may also be
denoted by the triple (h, g, t). By varying t, it is possible to
trade off performance and coverage; typically, improving the
performance (reducing the selective risk) comes at the cost
of rejecting more predictions, thereby reducing the coverage.
This inverse relationship can be visualized through the Risk-
Coverage (RC) curve, which plots the classifier’s selective risk
against its coverage [6] (see Fig. 1 as an example).

For the 0/1 loss, the Bayes optimal selective classifier, for
any coverage, is given by h = hMAP and

g(x) ≜ max
y∈Y

P [Y = y | X = x] (3)

which is known as Chow’s rule [3].
In practice, coverage and selective risk can be evalu-

ated empirically over a dataset D = {(xi, yi)}Ni=1 drawn
i.i.d. from pX,Y , yielding the empirical coverage ϕ̂(s;D) =
1
N

∑
(x, y)∈D s(x) and the empirical selective risk

R̂(h, s;D) =

∑
(x, y)∈D L(h(x), y)s(x)∑

(x, y)∈D s(x)
. (4)

1The terminology here is from decision theory and statistical learning
theory; it should not be confused with a surrogate loss function (such as
the cross-entropy loss) used to train neural networks.

C. Classification under Balanced Error Rate

One of the most widely used metrics for evaluating clas-
sifiers on class-imbalanced data is the BER, which captures
the importance of each class individually, weighting the error
accordingly. The BER is defined as

BER(h) ≜
1

K

∑
y∈Y

P [h(X) ̸= y | Y = y] (5)

and 1− BER(h) is known as the balanced accuracy.
Previous work [11] has shown that the optimal classifier

minimizing the BER is given by

h∗(x) = argmax
y∈Y

P [Y = y | X = x]

P [Y = y]
(6)

which we refer to as the BER classifier.

III. SELECTIVE CLASSIFICATION UNDER BALANCED
ERROR RATE

A. Problem Statement

We consider the problem of selective classification using
the BER as the evaluation metric. However, in contrast to the
conventional error rate, the BER is not naturally induced by
some loss function, as required in the description of selective
classification in Section II-B. Nevertheless, we can still define
the corresponding selective risk, as it consists simply of
conditioning the evaluation metric on the accepted predictions.
Following [5], we define the selective BER (SBER) as

SBER(h, s) ≜
1

K

∑
y∈Y

P [h(X) ̸= y | Y = y, s(X) = 1]. (7)

From a learning perspective, we focus on the post-hoc
problem: given an estimator f̂ : X → [0, 1]K of the poste-
rior probability pY |X (obtained, e.g., by training a machine
learning model), we wish to design a selective classifier (h, s)
minimizing SBER(h, s).

B. Theoretical Results

Let πy = P [Y = y], y ∈ Y , denote the prior distribution
of Y and, for any x ∈ X , let fy(x) = P [Y = y | X = x],
y ∈ Y , denote the posterior distribution of Y given X = x.
Additionally, for any selection function s : X → {0, 1}, let
πy(s) = P [Y = y|s(X) = 1], y ∈ Y , denote the post-rejection
priors, i.e., the prior distribution of Y restricted to the accepted
samples, and let π(s) = (π1(s), . . . , πK(s)) ∈ [0, 1]K .

For any c > 0, let HSBER(c) denote the set of all selective
classifiers (h, s) that minimize SBER(h, s) under the con-
straint ϕ(s) ≥ c and let ΠSBER(c) = {π(s) ∈ [0, 1]K : (h, s) ∈
HSBER(c)}. Our main theoretical result is the following theo-
rem.

Theorem 1: Suppose that h : X → Y , s : X → {0, 1},
g : X → R, t ∈ R and α = (α1, . . . , αK) ∈ [0, 1]K are such
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that

h(x) = argmax
y∈Y

fy(x)

αy
(8)

s(x) = 1[g(x) ≥ t] (9)

g(x) = max
y∈Y

fy(x)

αy
−

∑
y∈Y

fy(x)

αy
(10)

αy = πy(s), for all y ∈ Y (11)

and let c = ϕ(s). In this case, if α ∈ ΠSBER(c), then (h, s) ∈
HSBER(c).

Proof: (Sketch.) We first show that SBER(h, s) equals
the selective risk R(h, s) induced by the loss function
L(y, ŷ) = 1[ŷ ̸= y]/(Kαy), where α = π(s); then, we apply
the optimality result in [12]. However, since that result does
not allow α to depend on s, we need to already start from
some optimal α.

Note that, when ϕ(s) = 1 (e.g., if t = −∞), then αy = πy

and (8) reduces to the optimal BER classifier in (6).
While Theorem 1 gives sufficient conditions for an optimal

selective BER classifier, it does not provide an explicit con-
struction, since g(x) and α are dependent on each other. More-
over, even if we find a selective classifier satisfying (8)–(11),
we have no guarantee that α ∈ ΠSBER(ϕ(s)). Nevertheless,
we can use Theorem 1 as an inspiration to propose selective
classifiers that approximately satisfy (8)–(11).

C. Proposed Methods

We propose three methods inspired by Theorem 1.
1) Static SBER Classifier: The first method consists of

using (8)–(10) but setting αy = πy . This method is optimal
if πy(s) = πy for all y, i.e., the priors on Y remain constant
after rejection.

2) Filter-by-Class (FBC) SBER Classifier: This method
attempts to enforce πy(s) ≈ πy by rejecting the same fraction
of predictions from each predicted class. Similarly to the first
method, it uses (8) and (10) and sets αy = πy , but the
selection function is changed to s(x) = s(x|h(x)), where
s(x|y) = 1[g(x) ≥ ty], ty ∈ R is such that

E[s(X) | h(X) = y] = P [g(x) ≥ ty | h(X) = y] = c (12)

and c > 0 is the target coverage. In other words, the acceptance
threshold for each predicted class is chosen so that the induced
coverage within that predicted class is equal to c. Naturally,
this implies that ϕ(s) = c.

3) Adaptive SBER Classifier: The last method uses (8)–(10)
but computes αy iteratively by alternating (11), (10) and (9),
with t chosen at each iteration to satisfy some target coverage.
The details are given in Algorithm 1. If the αy’s converge,
the method results in a selective classifier satisfying (8)–(11).
However, since we have no guarantee of convergence, we
apply exponential smoothing to reduce potential oscillations.
Note that the post-rejection priors in (11), as well as the
coverage ϕ(s), have to be estimated at each iteration using
a tuning set, so the method is susceptible to overfitting.

Algorithm 1: Adaptive SBER Classifier Tuning

Input: Posterior f : X → [0, 1]K , tuning set D, target
coverage c > 0

Parameters: Iterations M , smoothing factor β
Initialize s(x) = 1 for all x ∈ X
for m = 1, . . . ,M :

Compute, for all k ∈ Y:

π̂k(s) =
1

ϕ̂(s;D)

1

|D|
∑

(x,y)∈D

1[y = k]1[s(x) = 1]

αk =

{
π̂k(s), if m = 1,

βαk + (1− β)π̂k(s), otherwise

Set g(x) using (10) and s(x) using (9), choosing t
such that ϕ̂(s;D) ≈ c

return α1, . . . , αK

IV. EXPERIMENTS WITH SYNTHETIC DATA

To illustrate our methods, we start with experiments with
synthetic data, where the posteriors are known exactly.

A. Data Generation

We consider a conditional isotropic Gaussian distribution
for X given Y with n = 2 features (X = R2) and K = 2
classes (Y = {0, 1}), where X ∼ N (µY , σY I) and I denotes
the identity matrix. We fix µ0 = [−1, 0], µ1 = [1, 0], σ2

0 = 1
and σ2

1 = 3 and we vary π1 (note that π0 = 1 − π1). We
can interpret feature x1 as informative and feature x2 as less
informative.

B. Experiments

We consider the following experiments:
• Experiment 1: The positive class is set to be the minority

class with π1 = 10%;
• Experiment 2: The positive class is set to be the majority

class with π1 = 90%;
• Experiment 3: The prior of the positive class π1 is varied

from 2% to 98%.
For each experiment, we generate one tuning set and 5 test

sets each with 50000 samples drawn i.i.d. from pX,Y and we
report the mean and standard deviation of the SBER computed
across the 5 test sets. To avoid unreliable statistics, we omit
SBER values for which one of the classes has fewer than 50
samples (0.1% of the total) after rejection.

We also compare our methods to the SOTA algorithm in [5],
using M = 10 iterations (as in [5]) and with the parameter
λ̂0 tuned by searching over the grid {0, 1, . . . , 11} (which
includes the grid {1, 6, 11} used in [5]). For our adaptive
method, we set M = 50 and β = 0.95.

C. Results

In Figure 1a, the results of Experiment 1 are displayed, with
the first graph exhibiting the RC curves, and the second, the
post-rejection priors π1(s) over the coverage points. Firstly,
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(a) Exp. 1 (π1 = 10%).
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Fig. 1: Results for all synthetic experiments, separated by columns. For each method, the curve shown corresponds to the
mean performance across 5 trials, while the shaded region corresponds to 1 standard deviation. In (a) and (b), the top panel
shows the RC curve, and the bottom panel shows the corresponding post-rejection prior of the minority class. In (c), the top
and bottom panels show the BER at 75% and 50% coverage, respectively, as a function of the class 1 prior π1.

we see that all methods designed for the BER yield better
results than Chow’s rule and that these methods show similar
performance. The good performance of the Static SBER
method can be attributed to the post-rejection priors remaining
well-behaved, except at the end of the curve (coverage below
15%). The Adaptive SBER shows identical behavior to the
CS-Plugin algorithm, while the FBC SBER method displays a
slightly better performance across the entire RC curve, except
at very low coverage values.

Figure 1b, which shows the results for the Experiment 2,
exhibits a similar result for high coverage values, with all
methods outperforming Chow’s rule drastically and presenting
similar BER values. However, as the coverage falls below
70%, both the CS-Plugin and the Static SBER’s performance
degenerates significantly, even following Chow’s rule curve.
The Adaptive SBER manages the priors better and yields
better results among all algorithms until 35% coverage, but, for
lower coverage values, this method reduces the minority class
prevalence in a way that the number of samples for this class
drops below 50, hence, the remaining points are not shown.
Interestingly, although the FBC SBER method is not the one
with the best results for high coverages, it shows a smooth
behavior, maintaining a significant sample proportion for the
minority class even at very low coverage, yielding reliable
results in that scenario.

Figure 1c illustrates the results of Experiment 3, where
the top panel shows the BER for 75% of coverage, while
the bottom panel reports it at 50% coverage. Starting from
the left on both graphs, we see that the behavior of all

methods is similar to that in Experiment 1, with the FBC
SBER outperforming every other algorithm, and that result is
amplified as the prevalence decreases. Going to the opposite
side, i.e., for high prevalence values, one can observe that the
performance for the FBC SBER method degrades, while the
SOTA algorithm and the Adaptive SBER yield better results.
In the second panel, i.e., for 50% coverage, the behavior is
similar except that, for higher prevalences (above 80%), all
methods but the Adaptive SBER deteriorate abruptly.

It is worth mentioning that our methods are considerably
faster to tune than the CS-Plugin. For instance, on an AMD
Ryzen 5 3600 6-core CPU with 16GB RAM, running the
entire Experiment 3 took on average 69 minutes for the CS-
Plugin method. In contrast, the Adaptive SBER method took
a fraction of the time, only 3.15 minutes, while, for the Static
and FBC methods, the tuning times were negligible.

V. EXPERIMENTS WITH REAL DATA

We now evaluate our methods using real-world data. In this
case, the true posterior fy(x) in Sections III-B is replaced with
an estimate by a machine learning model.

A. Dataset

We used the modified PatchCamelyon (PCam) benchmark
dataset available on Kaggle2, consisting of 96 × 96 pixel
images (Figure extracted from hematoxylin and eosin (H&E)

2https://www.kaggle.com/competitions/histopathologic-cancer-detection

https://www.kaggle.com/competitions/histopathologic-cancer-detection
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stained histopathological slides of lymph nodes and classified
into tumorous and non-tumorous patches. It contains 220025
non-duplicate image samples. The dataset was randomly split
into 80% training, 2% validation, and 18% testing. Each
subset was independently imbalanced to a 9 : 1 ratio between
negative and positive classes, preserving all negative samples.
The final sample counts are: 116362 (train), 2909 (validation),
and 26182 (test).

B. Model Architecture and Training Details
Model training and evaluation were performed using Py-

Torch on a NVIDIA GeForce RTX 3070 GPU. We used the
ResNet-34 [13] architecture, a widely adopted convolutional
neural network for image classification tasks, initialized with
ImageNet weights. Training was performed for 20 epochs
using the Adam optimizer with an initial learning rate of
10−4 and a batch size of 64, using the cross-entropy surrogate
loss function. The learning rate was dynamically adjusted via
the ReduceLROnPlateau scheduler (factor=0.5, patience=2,
min_lr=10−5), monitoring the balanced accuracy on the vali-
dation set. To improve generalization, we applied simple data
augmentation during training: random horizontal and vertical
flips. The model at the best performing epoch was selected
based on the balanced accuracy on the validation set.

C. Results
The Figure 2 displays the results on the PCam dataset,

with the top panel exhibiting the RC curves of all methods
while the bottom panel shows the post-rejection priors of the
minority class to these methods. We observe that all methods
except Chow’s Rule perform well from 100% coverage down
to approximately 80%, however, as coverage is reduced, we
see that a growing performance gain is presented by the FBC
SBER algorithm, with the selective risk close to 0 at 5%
coverage. At the same time, the Static SBER, CS-Plugin, and
Adaptive SBER start to degenerate. It can also be seen that,
although the Adaptive SBER and the CS-Plugin worsen almost
equally, at 30%, the CS-Plugin degenerates completely, while
the Adaptive SBER remains reasonably well until around 10%
of coverage.

VI. CONCLUSION

In safety-critical applications, SC plays a crucial role in
mitigating potential errors. However, those tasks usually come
with class-imbalanced data, and most solutions in the literature
are based on unsuitable metrics such as accuracy. This work
addresses SC under BER, where we establish sufficient con-
ditions for an optimal selective classifier for this metric and
derive three simple algorithms that are fast and highly scalable,
applicable to any trained probabilistic model without requiring
retraining. We displayed experiments on both synthetic and
real data that show that the Adaptive SBER algorithm meets
or surpasses the performance of the current SOTA algorithm
across all scenarios tested, while the FBC SBER method is in
some cases capable of outperforming both methods. In future
work, we aim to combine both of our proposed algorithms
into a single one and evaluate our methods in more real-world
scenarios, including multi-class classification.
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Fig. 2: RC curves and post-rejection priors of all methods in
the real-world scenario with the PCam dataset.
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