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DUAL-ANTENNA PASSIVE SYNTHETIC
APERTURE DOA ESTIMATION FOR

AIRBORNE PLATFORMS
Leandro Geraldo da Costa, Daniele Oliveira Silva, Romildo Henrique de Souza, and Felix Antreich

Abstract— This work presents a dual-antenna passive synthetic
aperture Direction-of-Arrival (DoA) estimation approach for
compact airborne sensors. A physics-based model is employed,
incorporating spherical wave propagation, Doppler effects, and a
200 km Line-of-Sight (LOS), which is implemented in an in-house
radar simulator. The corresponding Cramer-Rao Lower Bound
(CRLB) is derived to analyze the estimator’s behavior and, in
particular, to explore the trade-off between aperture length Q
and number of snapshots K. Computer simulations conducted
over a 0–50 dB Signal-to-Noise Ratio (SNR) range demonstrate
high azimuth and elevation accuracy, convergence of the Root
Mean Square (RMS) error to the theoretical lower bound, and
robustness. The proposed scheme offers a low size, weight, and
power (SWaP) solution for passive airborne sensing platforms.

Keywords— Passive radar, synthetic aperture, antenna ar-
rays, direction-of-arrival, airborne platforms, Cramer–Rao lower
bound

I. INTRODUCTION

High-resolution Direction-of-Arrival (DoA) estimation is
crucial in surveillance, navigation, and electronic warfare for
detecting and localizing radio sources [1]. While classical
multi-antenna arrays are effective, their bulky and power-
hungry front-ends make them unsuitable for low size, weight,
and power (SWaP) platforms like small aircraft or drones [2].

To overcome these limitations, passive synthetic aperture
methods have emerged, leveraging platform motion to emulate
a large virtual array with minimal hardware. Foundational
work by Cheng et al. [3] demonstrated that a single moving re-
ceiver, combined with high-resolution algorithms like MUSIC,
could achieve accurate DoA estimates using simple and low-
cost hardware. Building on this, other researchers have focused
on enhancing single-sensor synthetic aperture positioning by
developing robust signal processing to compensate for motion-
induced phase variations and enable coherent data accumula-
tion, significantly improving performance in low Signal-to-
Noise Ratio (SNR) environments [4].

However, these single-sensor synthetic aperture systems are
fundamentally limited to estimating the azimuth angle [5] and
suffer from ambiguities over a wide Field-of-View (FoV).
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While adding a second sensor to form a simple interferometer
is a well-known solution for resolving elevation, the state-of-
the-art lacks a comprehensive analysis of such a dual-antenna
configuration within a synthetic aperture framework under
realistic airborne conditions. Specifically, few estimators are
designed to handle the combined challenges of spherical wave
propagation, Doppler effects from airborne platforms, and the
need to maintain accuracy over long-range Line-of-Sight (LoS)
links. This work addresses that gap.

In this work, we present and analyze a dual-antenna passive
synthetic-aperture DoA estimation approach tailored to such
challenging scenarios. We develop a physics-based signal
model incorporating spherical wave propagation and Doppler
effects over a 200 km LoS. This model is implemented in
the Advanced Radar Simulator (ARS), an in-house software
developed at the Aeronautics Institute of Technology (ITA)
[6]. The corresponding Cramer-Rao Lower Bound (CRLB)1 is
derived to analyze the estimator’s behavior and guide the trade-
off between synthetic aperture length (Q) and the number of
snapshots (K)2.

Comprehensive simulations confirm that, for practical aper-
ture–snapshot combinations such as Q = 500 and K = 2, the
proposed architecture maintains low Root Mean Square (RMS)
DoA error across the entire 0–50 dB SNR range. These results
demonstrate the feasibility and robustness of dual-antenna
passive synthetic apertures for low-SWaP airborne platforms
and provide a solid foundation for future work on multi-source
scenarios and intra-pulse modulation exploitation.

II. SENSING SCENARIO

In order to evaluate the proposed dual-antenna synthetic-
aperture system, we consider a representative airborne sensing
scenario. This scenario is characterized by the LoS range
between the airborne platform and a stationary ground emitter,
as well as their relative altitude. The receiver is equipped
with two antennas, spaced by λ/2, enabling phase-coherent
signal reception. The platform flies eastwards at a constant
speed of v = 200m/s; the antennas, arranged in a vertical
Uniform Linear Array (ULA), remain oriented toward the
radio source. This motion generates a wide virtual aperture
in the azimuth direction and provides an instantaneous inter-
ferometric baseline in elevation. The emitter is localized by

1The CRLB sets the minimum achievable error variance for any unbiased
estimator; an estimator that attains this bound is called efficient [7], [8].

2Following the common use in array processing literature [2], the word
snapshot denotes any measurement vector that is processed coherently.
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performing DoA estimation at successive positions along the
same flight heading. We assume that the platform’s position
and attitude are known precisely.

We consider a 200 km LoS link at near-zero elevation. Since
the airborne receiver and ground emitter are almost coplanar,
the vertical geometry is unfavorable, making the dual-antenna
baseline essential for accurate elevation estimation. All signal
and flight dynamics are generated with the ARS, it recreates the
complete sensing scenario. A summary of the key geometry,
platform, and waveform parameters is given in Table I and
the virtual arrays and snapshot combinations used in this
work with the synthetic aperture (in millimeters) for each pair
(K,Q) are shown in Table II.

TABLE I: Scenario parameters.

Geometry & Operating Transmit & Signal

Par. Val. Par. Val.

LoS [km] 200 fc [GHz] 26
Sens. alt. [m] 0 PW [ns] 10 000
El. [◦] 0 PRP [kHz] 10
Vel. [m/s] 200 Ant. pat. (Radar) Omni
Fs [MHz] 200 Doppler Yes
Ant. pat. (Sensor) Omni Freq. off. mod. No
|fd|max [kHz] ∼ 17.35 Prop. mod. Spherical
Radar alt. [m] 0 Sig. type Rect. pulse

TABLE II: S. Aper. length for the selected (Q,K) pairs.

Q 2 10 20 50 100 500 500 1000
K 1000 200 100 40 20 4 2 2

S. Aper. (mm) 0.001 0.009 0.019 0.049 0.099 0.499 0.499 0.999

III. SIGNAL MODEL

Under the far-field assumption, the signal is assumed to
reach the center of the ULA (at position pn) in discrete time
intervals of (n− 1)Ts, where Ts is the sampling duration and
n = 1, 2, 3, . . . . We consider a synthetic aperture along the
x-axis with a size of Q consecutive samples. The unit vector

uT = [ sin(θ) cos(φ) sin(θ) sin(φ) cos(θ) ] = [ ux uy uz ] , (1)

oriented perpendicular to the incident planar wavefront, in-
dicates the DoA relative to the antenna coordinate system’s
center, which moves with the platform for each snapshot
k = 1, . . . ,K, as shown in Fig. 1. In this synthetic aperture
setup with two physical antenna elements, the azimuth angle
φ, which is part of the DoA, is measured from the x-axis
toward the y-axis, intersecting the projection of u onto the
xy-plane. The elevation angle θ is measured from the z-axis
toward u.

We assume the two antennas are separated by a distance
δ = λ/2, placing them at fixed z-coordinates of z = ± δ/2.
While these antennas are fixed in the vertical dimension, the
array (or platform) traverses discrete sampling points along the
x-axis with an inter-sampling distance of ∆ = vxTs, where vx
is the velocity of the platform. The antenna positions in each
of the K consecutive blocks, each with its own coordinate
system, are denoted by a single expression:

di,k,l =
[(

Q+1
2 − l

)
∆ 0 δ

2 (−1)i+1
]T

, i ∈ {1, 2}.
(2)

Here, the index l denotes the local sample number within
a specific block k, where l ranges from 1 to Q. This local
index is derived from the absolute sample index n using the
relation l = n−Q(k − 1). The index i, in turn, distinguishes
between the two antennas. This format concisely represents
the common x-coordinate and the opposing z-coordinates for
each antenna pair.

Thus, the time delay at sensor di,k,l =
[di,k,l,x di,k,l,y di,k,l,z]

T is given by

τi,k,l =
1

c
uTdi,k,l =

1

c

((
Q+ 1

2
− l

)
∆ sin(θ) cos(φ)

+
δ

2
(−1)i+1 cos(θ)

)
, (3)

where c is the speed of light.
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Fig. 1: Synthetic aperture for Q samples and K snapshots.

Let s(t) ∈ C be a signal impinging on the ULA from u.
The complex baseband signal at di,k,l is[

y1,k((l−1)Ts)

y2,k((l−1)Ts)

]
︸ ︷︷ ︸

=xk[l]

=

[
sk

(
(l−1)Ts−τ1,k,l

)
e−j2πfcτ1,k,l

sk

(
(l−1)Ts−τ2,k,l

)
e−j2πfcτ2,k,l

]
(4)

+
[

n1,k((l−1)Ts)

n2,k((l−1)Ts)

]
︸ ︷︷ ︸

=nk[l]

where nk[l] is additive complex white Gaussian noise with
CN (0, σ2

n). Assuming the signal s(t) is narrowband, for Q
consecutive time instances, the difference between consecutive
delays can be approximated as

τi,k,(l+2) − τi,k,(l+1) ≈ τi,k,(l+3) − τi,k,(l+2) ≈ . . .

≈ τi,k,Q − τi,k,Q−1.
(5)
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Furthermore, we assume that for Q consecutive samples,
also the complex envelope sk((l − 1)Ts) = sk[l], for l =
1, 2, . . . , Q can be approximated as

sk[1] ≈ sk[2] ≈ sk[3] ≈ · · · ≈ sk[Q]. (6)

Thus, we can write

xk[l] ≈ sk[l]

[
e−j2πfcτ1,k,l

e−j2πfcτ2,k,l

]
+ nk[l]. (7)

Finally, we can rearrange the phase term of the received sig-
nal as a left centro-hermitian steering vector a(φ, θ, fc, vx, Ts)
for each snapshot k and write the received signal in vector
notation. In the expression below, we use sk[Q], the envelope
of the last sample within each block, as the representative
value for the stationary signal envelope.

y[k] ≜ e− j
2π
λ (k−1)Q∆ sin(θ) cos(φ)sk[Q]︸ ︷︷ ︸

=s̃[k]

e
+ j 2π ∆

λ

(
Q−1
2 sin(θ) cos(φ)+

δ
2∆ cos(θ)

)

e
+ j 2π ∆

λ

(
Q−1
2 sin(θ) cos(φ)− δ

2∆ cos(θ)

)

e
+ j 2π ∆

λ

(
Q−3
2 sin(θ) cos(φ)+

δ
2∆ cos(θ)

)

e
+ j 2π ∆

λ

(
Q−3
2 sin(θ) cos(φ)− δ

2∆ cos(θ)

)
...

e
− j 2π ∆

λ

(
Q−3
2 sin(θ) cos(φ)− δ

2∆ cos(θ)

)

e
− j 2π ∆

λ

(
Q−3
2 sin(θ) cos(φ)+

δ
2∆ cos(θ)

)
e
− j 2π ∆

λ

(
Q−1
2 sin(θ) cos(φ)− δ

2∆ cos(θ)

)

e
− j 2π ∆

λ

(
Q−1
2 sin(θ) cos(φ)+

δ
2∆ cos(θ)

)


︸ ︷︷ ︸

=a(φ,θ,fc,vx,Ts)

+


nk[1]
nk[2]

...
nk[Q]


︸ ︷︷ ︸

=ñ[k]

= a
(
φ, θ, fc, vx, Ts

)
s̃[k] + ñ[k]. (8)

Assuming that the angles of arrival φ and θ are constant for
K snapshots we can write a signal model in matrix form
collecting K snapshots

Y = a(φ, θ, fc, vx, Ts) s̃
T + N ∈ C2Q×K , (9)

where

Y = [ y[1] y[2] ... y[K] ] , (10)
N = [ ñ[1] ñ[2] ... ñ[K] ] , (11)

s̃ = [s̃[1], s̃[2], . . . , s̃[K]]
T
. (12)

Multiplying sk[Q] by e− j
2π
λ (k−1)Q∆ sin(θ) cos(φ) implements

a global phase shift applied to each snapshot k that com-
pensates for the platform displacement. Hence, the center of
the synthetic aperture coordinate system for each snapshot k
always coincides with the center of the first snapshot (k = 1).

IV. DOA ESTIMATION

In this work, we apply the Maximum Likelihood Estimator
(MLE) to estimate the DoA, which for a single impinging
wavefront is equivalent to the so-called conventional beam-
former applied to DoA estimation [8].

The spatial covariance matrix Ryy can be estimated based
on 2Q×K snapshots

R̂yy =
1

K

K∑
k=1

y[k]yH[k] =
1

K
YYH ∈ C2Q×2Q. (13)

The MLE for the DoA, azimuth and elevation angles, in the
single-source case can be given as

(φ̂,θ̂)=argmax
φ,θ

{aH(φ,θ,fc,vx,Ts) R̂yy a(φ,θ,fc,vx,Ts)}. (14)

To solve for (φ̂, θ̂), a two-dimensional grid search is used
to roughly estimate the maximum of the likelihood function
and the Nelder-Mead optimization method [9] is applied for
refinement.

First, an initial coarse grid search is performed for φ ranging
from 0◦ to 180◦ and for θ ranging from 90◦ to 120◦, using
a resolution of 1◦ in both cases. These initial coarse searches
provide estimates of angles, which are subsequently refined
using the Nelder–Mead method, with a tolerance of 10−2 for
angle parameters and 10−14 for the cost function, restricted
to a maximum iteration limit of 500. In addition to that,
a penalty function terminates the optimization if the angle
variation exceeds 5◦.

V. CRAMER–RAO LOWER BOUND (CRLB)
We now derive the CRLB for the estimation of the DoA for

the dual-antenna synthetic aperture data model defined in (8)
and (9). We consider that the Doppler effect and spherical-
wave propagation effects are negligible for the sensing sce-
nario. Recall that each of the Q aperture positions has two
physical antenna elements, yielding 2Q total measurements
per snapshot k, and we collect K snapshots.

To derive the CRLB, it is convenient to vectorize Y as
˜̃y = vec(Y) ∈ C2QK×1. Then

˜̃y = s̃⊗ a(φ, θ, fc, vx, Ts) + ˜̃n, (15)

where ˜̃n = vec(N) ∼ CN
(
0, σ2I2QK

)
and ⊗ denotes the

Kronecker product. Defining

µ(φ, θ) = s̃⊗ a(φ, θ, fc, vx, Ts), (16)

the Fisher Information Matrix (FIM) for the parameter vector
η = [φ, θ ]T for the complex multivariate Gaussian case can
be given by [7]

F(η)= 2
σ2 Re




∥∥∂µ(φ,θ)
∂φ

∥∥2
2

(∂µ(φ,θ)
∂φ

)H ∂µ(φ,θ)
∂θ(∂µ(φ,θ)

∂θ

)H ∂µ(φ,θ)
∂φ

∥∥∂µ(φ,θ)
∂θ

∥∥2
2


.

(17)
Further reformulating3 (17) we get

F(η) =
2 ∥s̃∥2

σ2
Re{J} =

2 ∥s̃∥2

σ2
Re

{[
J1,1 J1,2
J2,1 J2,2

]}
(18)

3(a ⊗ b)H(a ⊗ c) = aHa ⊗ bHc = ||a||22 ⊗ bHc = ||a||22bHc with
a ∈ CN ,b ∈ CN , and c ∈ CN .
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with

J1,1 =
∥∥∂a(φ,θ,fc,vx,Ts)

∂φ

∥∥2
2

(19)

J1,2 =
(∂a(φ,θ,fc,vx,Ts)

∂φ

)H ∂a(φ,θ,fc,vx,Ts)
∂θ (20)

J2,1 =
(∂a(φ,θ,fc,vx,Ts)

∂θ

)H ∂a(φ,θ,fc,vx,Ts)
∂φ (21)

J2,2 =
∥∥∂a(φ,θ,fc,vx,Ts)

∂θ

∥∥2
2
. (22)

The
For clarity in the plots, we re-center both angles around the

virtual antenna boresight as follows:

φant = φ − 90◦, θant = 90◦ − θ. (23)

Figure 2 shows the RMS azimuth error for various combina-
tions of Q and K at SNR = 0dB. The following observations
can be made:
• Azimuth-dependent degradation: For short apertures, such

as Q = 2, MLE convergence failures produce outliers at the
FoV limit. The estimation algorithm defaults to φant = 0◦ to
manage these cases, creating an RMS error “ramp” as this
incorrect angle persists across the azimuth range.

• Sample-budget trade-off: For a fixed 2000-sample budget,
a longer synthetic aperture (Q) is more effective than more
snapshots (K).

• Virtual aperture size: With larger Q, the error profile flat-
tens from a “ramp” to a “plateau” within the 0◦–60◦ azimuth
range, indicating more stable performance, especially for
Q ≥ 100.
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Fig. 2: RMS azimuth error vs. Q, K values. SNR = 0 dB.

To highlight the “plateau” behaviour, Fig. 3 plots the CRLB
for the signal model as a function of SNR for several (Q,K)
pairs at a fixed boresight azimuth φant = 0◦ and θant = 0◦.
As expected, for a restricted number of samples, enlarging the
synthetic aperture (Q) lowers the bound.

Fig. 4 keeps Q = 500 and K = 2 constant and shows the
CRLB (Signal Model) vs. SNR for a set of azimuth angles φant.
One can see that for larger φant the CRLB tends to infinity,
suggesting an identifiable problem for larger φant, as can be
observed in Table III for φant = 89.99°.

Detailed insight into the outlier behavior of the MLE is
provided in Fig. 5 for Q = 500 and K = 2. When φant is in
the range from −90◦ to +90◦, the MLE exhibits heavier tails,
especially at lower SNR and still a large number of outliers
at moderate to higher. Restricting φant to a range of ±60◦, as
shown in Fig. 6, significantly reduces outliers and improves
overall robustness.
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Fig. 3:
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CRLB vs. SNR for combinations of Q and K.
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CRLB vs. SNR for different φant and θant = 0◦.

TABLE III:
√

CRLB at φant = 89.99◦, θant = 0◦ versus SNR.

SNR (dB) 0 5 10 15√
CRLBφant=89.99◦ (◦) 3.30 × 104 1.86 × 104 1.05 × 104 5.88 × 103

SNR (dB) 20 25 30 35√
CRLBφant=89.99◦ (◦) 3.30 × 103 1.86 × 103 1.05 × 103 5.88 × 102

SNR (dB) 40 45 50√
CRLBφant=89.99◦ (◦) 3.30 × 102 1.86 × 102 1.05 × 102
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Fig. 5: Boxplot for Q = 500,K = 2. φant ∈ [−90◦,+90◦].

Fig. 7 compares the RMS azimuth error to the
√

CRLB
for Q = 500 and K = 2. For SNR ≳ 25 dB, both simulation
results closely match the theoretical bound, demonstrating that
the MLE is efficient at moderate to higher SNR. Thus, the
Doppler effect and spherical-wave propagation are negligible
in this simulated scenario. In contrast, the estimation of θ̂ant
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benefits substantially from the half-wavelength spacing be-
tween the two physical antennas. This fixed baseline provides
direct elevation discrimination that does not depend strongly
on the virtual aperture size. Fig. 8 shows the RMS error of
θ̂ant across positive azimuth angles at SNR = 0dB. The results
show relatively stable performance for all (Q,K) set, without
convergence problems in the complete FoV.
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Fig. 8: RMS elevation error vs. Q, K values. SNR = 0 dB.

As expected, Fig. 9 shows that CRLB for the elevation
angles maintains the same behavior throughout the azimuth
angle range of φant.

VI. CONCLUSION

In this work we investigated a dual-antenna synthetic aper-
ture DoA estimation approach for airborne platforms using
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Fig. 9:
√

CRLB for elevation angle θant and different φant.

the ARS. The derived CRLB for the case that Doppler
effect and spherical-wave propagation are negligible showed
that two closely spaced elements can achieve sub-degree
azimuth–elevation accuracy over a broad SNR range. Key
takeaways are:

1) Longer synthetic apertures boost azimuth resolution.
2) As Q increases, performance within the 120◦ FoV no-

ticeably outperforms that at other angles.
3) The MLE approaches the CRLB in moderate to high SNR

for φant and can be considered efficient for θant.
This compact approach suits airborne passive sensing under
strict SWaP constraints. Future work may include multi-
source scenarios, advanced pulse modulation, and robustness
to frequency offsets and clutter in more complex environments.
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