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Kernel-Based Digital Predistortion: An Approach
with the EX-QKRLS Algorithm
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Abstract— This paper investigates the effectiveness of kernel-
based adaptive filtering for digital predistortion in power ampli-
fiers. Specifically, the EX-QKRLS algorithm, which incorporates
concepts from the Kalman filter, is employed to model and
compensate for the nonlinearities introduced during signal ampli-
fication, without requiring memory polynomials or lookup tables.
This method reduces overall signal distortion and improves
transmission fidelity robustly and efficiently. Unlike conventional
approaches, the proposed technique offers high adaptability, en-
abling rapid adaptation to changing system conditions, including
temperature fluctuations and component aging.
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I. INTRODUCTION

Power amplifiers (PA) play a crucial role in wireless com-
munication systems. Due to their non-linear nature, the output
signal suffers distortion when the amplifier operates close to
saturation. In this scenario, the range is reduced, increasing
the power consumption [1][2].

One technique to be used is digital predistortion (DPD),
which consists of modifying the signal after estimating the
PA response, so that, when amplified, the signal is transmitted
as initially intended. DPD can be done using adaptive filters,
since precise modeling of the nonlinearities to which the signal
is exposed during amplification is necessary. However, estimat-
ing the amplifier’s output can be computationally expensive,
since the type of nonlinearity produced by the PA is unknown
[3].

Currently, digital predistortion commonly relies on tech-
niques that compensate for amplifier nonlinearities using
series-based models, such as Volterra, memory polynomials,
and Wiener-Hammerstein, or lookup tables (LUTs) [3] [4].
While effective, these approaches require prior knowledge
of the distortion characteristics. Series-based models, for in-
stance, demand the estimation of the polynomial order and
memory depth, that is, how much influence past input samples
have on the current output. LUT-based methods, on the other
hand, require detailed mapping of the signal’s amplitude and
phase. Moreover, these models are often sensitive to tempera-
ture variations and long-term component aging, which reduces
their robustness in real-world applications.

Variants of these models have been explored in recent
studies, such as [5], [6], and [7]. As an alternative, this
work proposes a kernel-based adaptive filtering approach for
power amplifier linearization, using the EX-QKRLS (Extended
Quantized Kernel Recursive Least Squares) algorithm. This
method enables nonlinear modeling and predistortion without
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requiring prior estimation of the nonlinearity degree, making
the process more automatic, adaptive, and flexible.

In this article, Section II presents a theoretical overview of
the main concepts discussed. The algorithm is presented in
Section III and Section IV shows the experiment’s setup. The
results are shown in Section VI and the final section presents
conclusions and suggestions for future work.

II. FUNDAMENTALS OF DIGITAL PREDISTORTION WITH
ADAPTIVE FILTERING

This section presents the fundamentals used in the im-
plementation of DPD based on the algorithms explored in
this work. The structures for modeling nonlinearities will be
described, including memory polynomials, adaptive filtering
algorithms such as the traditional recursive least squares
algorithm (RLS) and its kernel-based version, and the Kalman
filter.

A. Memory Polynomial

For the treatment of non-linear signals, techniques are cre-
ated for modeling non-linearity that allow the use of adaptive
filtering algorithms.

Since the nonlinearity introduced by the power amplifier
can be modeled by polynomial expressions, the most widely
implemented technique for this framework is the use of models
based on the Volterra series [8]. This series can be interpreted
as a Taylor series with memory [10] and is described by
Equation (1).
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where w; (11,2, ..., 1;) are the coefficients of the nonlinear filter
based on the Volterra model, y(k) represents the noise-free
system output, and u(k — [;) the input signal.

The biggest problem with this technique is its rapid growth
in terms of coefficients, which, in some cases, can generate
very high computational complexity. To get around this situa-
tion, the series is truncated in a certain order, or a specific
term is suppressed. There are several types of reductions
based on this series, but the most common for DPD systems
being the memory polynomial (MP). [9], which is described
in Equation (2).
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For applications where memory effects are more significant
or extend over a larger number of samples, it may be necessary
to include more terms in the series. From there, cross terms are
added to the MP; this alternative is called Cross-Term Memory
(CT) and follows Equation (3).
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B. The RLS Algorithm

The recursive least squares algorithm is one of the main
adaptive filtering algorithms because it presents a fast con-
vergence to the optimal coefficient vector. This algorithm is
based on the recursive update of the correlation matrix [10],
according to

wik) =[S, M) S A i) = Ry (Bpp (F), (4)

where Rp and pp, are called deterministic correlation matrix
and deterministic cross-correlation vector, d(i) is the desired
value at the instant ¢, A is the forgetting factor, usually set in
the range 0 < A < 1, and u(7) represents the input vector at
time 4, composed of past samples of the input signal u(k).

In contrast to the speed of convergence, the RLS algorithm
presents a great computational effort, due to the calculation
of the inverse of matrix Rp [11]. Furthermore, depending on
its implementation and on the desired input data, it may be
unstable [12].

C. Kernel-Based Adaptive Filtering

Kernel-based adaptive filtering (KAF) is a signal processing
technique that combines adaptive filtering with kernel theory.
Its main feature is the kernel trick, which allows operations
to be performed on a high-dimensional vector space without
explicitly mapping the data, thus enabling nonlinear problems
to be treated linearly [13].

In this space, known as reproducing kernel Hilbert space
(RKHS), the similarity between vectors is computed via a
symmetric, non-negative kernel function [14]. The kernel
function can take several forms, depending on the type of
nonlinearity or the quality of estimation required. The most
commonly used function, due to its universal approximation
capability and numerical stability, is the Gaussian function
[15]. The Gaussian model is often employed in nonlinear
signal processing; its form, for complex values, is expressed
by

1 I 1 * 2
k(u(k), u(l)) = P 2izo 5z (wilk)=ui (D) ’ )
where the coefficient ¢ is called the kernel bandwidth and
represents the interaction range of the kernel.

Although the kernel function can be computationally ex-
pensive for large datasets, kernel adaptive filtering (KAF)
achieves promising results in modeling nonlinear signals.
While Volterra-based models suffer from rapidly increasing
complexity with the order and memory depth, kernel adaptive
filters can provide similar accuracy with lower computational
cost [14].

D. Discrete Kalman Filter

The Kalman filter is a widely used state estimation tech-
nique due to its ability to provide accurate estimates even in
noisy and uncertain environments. Its operation is based on
two main steps: prediction and updating [16].

In the prediction stage, the future state of the system
is estimated based on the dynamic model and the current
state. This process can be described by the state equation,
represented in Equation (6).

x(k + 1) = F(k + 1, k)x(k) + G(k)r(k), ©6)

where x(k) represents the state vector in time k, F(k + 1, k)
and G(k) are known transition matrices, and r(k) is the
process noise, which represents the uncertainties associated
with the system dynamics.

After prediction, the state estimate is corrected in the update
stage. In this phase, the available measurements and their
respective uncertainties are taken into account. This update
is performed using the observation equation, Equation (7).

y(k) = u" (k)x(k) + v(k), (7)

where y(k) is the observed output of the system and v(k)
corresponds to the measurement noise. This term captures the
external disturbances that affect the measurements and must
be considered to ensure a robust estimate.

In this way, the Kalman filter continuously refines the
prediction of the system states and corrects it based on
observations, allowing efficient modeling of dynamic systems
under noise. This approach is particularly useful in telecommu-
nications, signal processing, and system control applications,
where accuracy in state estimation is essential.

Although the classical Kalman filter was developed for
systems with linear state and measurement equations, many
practical problems involve nonlinear dynamics. In such cases,
the extended Kalman filter (EKF) is applied, which linearizes
the equations in a region close to the currently available state
estimate [10]. The main drawback of the EKF is its computa-
tional complexity, which increases for nonlinear systems [10].

III. THE EX-QKRLS ALGORITHM

The algorithm proposed in this work, EX-QKRLS, is a
derivation of the EX-KRLS algorithm, presented in [17], with
the addition of the quantization technique. Both concepts are
discussed below.

A. The EX-KRLS Algorithm

The EX-RLS or extended RLS algorithm [18] is a variation
of the RLS algorithm that makes it fully equivalent to a
Kalman filter. When used in kernel-based filtering, we have
the EX-KRLS algorithm. The EX-KRLS algorithm follows
the state-space equations presented in the previous section,
but uses the vector (k) as an input signal, instead of u(k),
where ¢ (k) belongs to Hilbert space and obeys the relation
r(u,u) = @7 (w)p(u).

This modification gives EX-KRLS a higher performance
than KRLS, especially in dynamic tracking applications, where
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parameters or environmental conditions vary over time [14]. In
such cases, the quick adaptation capacity is critical to ensuring
that the model correctly follows these variations.

Despite its fast convergence, EX-KRLS can become un-
stable when processing a large number of samples, due
to increasing computational complexity and numerical error
propagation.

B. Sparcification

As explained in the previous section, the EX-KRLS al-
gorithm is computationally demanding because, being an
RLS algorithm, it requires matrix inversion operations, which
significantly increase its computational cost. Therefore, its
execution becomes slow, compromising the performance of
DPD, especially in real-time applications.

However, not all samples contribute significantly to the
signal estimate. In this scenario, Platt’s novelty criterion [19]
is introduced. This criterion, commonly used in radial basis
functions, operates under the assumption that points close to
each other in the input space convey similar information and
can therefore be represented by a single point.

We define the difference between two vectors as dist =
min(|lu(k) —u(l)||). Knowing the distance between samples
allows us to define a threshold that determines whether a
sample is relevant to the system. In this work, this threshold
is named ¢. In the implemented algorithm, if the sample has
a distance greater than ¢, it is incorporated into the model;
otherwise, the sample is discarded and the weights of the
samples already stored are updated [20]. This process is known
as quantization and is represented by the letter Q in the
acronym EX-QKRLS!.

If the parameter J is set to a very low value, more samples
will be considered relevant for the algorithm, resulting in
behavior similar to EX-KRLS, which produces accurate results
but is computationally heavy. Conversely, a larger 6 would
consider fewer samples, reducing the number of operations,
but at the cost of estimation accuracy.

To balance this trade-off is to initialize J as a line with a
positive slope that passes through the origin. After a certain
number of samples, § becomes constant. This strategy favors
early samples, establishing a baseline for modeling and, once
this level is reached, it becomes more selective in its choices.

In this way, EX-QKRLS is described in Algorithm I, with
inputs: input vector u, forgetting factor \, noise variance ratio
q, transition matrix scale factor «, regularization parameter II,
kernel bandwidth o, and maximum threshold 6,,,«. The kernel
function is denoted by «(+, -) and the dictionary vector D stores
samples selected as relevant according to Platt’s criterion.
Vector a contains the filter coefficients, while Q and p are
auxiliary variables updated recursively to ensure stability and
weighting of new information. The outputs of this algorithm
are y(k), the estimated output, and e(k), the error between the
desired output d(k) and the filter output.

IThe  derivation of the EX-QKRLS algorithm, as  well
as the codes wused in this article — all implemented in
MATLAB® — are available in the DPD repository, accessible at

https://github.com/isaacmacario2/DPD.

Algorithm I: EX-QKRLS Algorithm
Initialization

D(1) =u(1), a(1) =

— Omax
length(u) *

ad(1) 5

Ma ) = 0 m

P() = rapaimgy Q) = MrEma)arTmd
for each k
for each /
h(l) = r(u(k),D(1))
y(k) = y(k) + (1) xa())
end
[dist, idz] = min(|[u(k) — D))
if dist > 6
D =[D u(k)]
z(k) = Q(k-Dh(k)
r = Ap(i —1) + w(u(k),u(k)) — h" (k)z(k)
e(k) = d(k) — W (k)a(k — 1)

_[a(k—1) — z(k)r=t(k)e(k)
ak) = o 1 (k)e(k)
_ p(k—1)
o) = D Qk — 1yr(k) + 2R (K)  —a(k)
_ |a|? — D)r(k) +z(k)z -z
Q(k) = r(k)(lal2+XFgp(k—1)) [ —21(k) 1

else
e(k) = d(k) — h(k)a(k — 1)
a(idx) = a(idz) + e

end
if § < Omaw
d=m=xk
else
6= 6ma1
end

end

To compare execution speed, EX-KRLS and EX-QKRLS
were applied to a random stationary signal with variance
0.1. The reference signal was generated using a third-degree
polynomial nonlinearity with memory 2, corrupted by additive
white Gaussian noise (variance 0.001). With o, = 0.5, 1000
samples, and 500 Monte Carlo runs, runtime was measured
using MATLAB®’s functions tic and foc, varying parameter
0. Accuracy was assessed by the average difference in MSE
values (in dB). MSE quantifies the mean squared deviation
between the estimated and desired outputs and is commonly
used to evaluate adaptive filters. Results are shown in Table I,
and the learning curve in Figure 1.

TABLE I
ALGORITHM RUNTIME COMPARISON AND ACCURACY MSE DEVIATION
AFTER CONVERGENCE

| =04 | s5=07 | §=1
EX-KRLS 4.311 s 4.311 s 4.311 s
EX-QKRLS 3.434 s 1.951 s 1.451 s
MSE Difference 1.344 dB 2.482 dB 3.326 dB

IV. EXPERIMENTAL SETUP

In this section, the performance of the proposed model
will be evaluated. The following results are obtained through
implementations made in MATLAB®.

To perform tests with real measurements, RF WebLab [21]
was used, a remote signal amplification platform developed
through a partnership between Chalmers University (Sweden)
and National Instruments (NI). The system provides access
to high-performance equipment for testing linearization algo-
rithms.
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Fig. 1. Learning curves for algorithms EX-KRLS and EX-QKRLS.

The RF WebLab consists of a computer that manages the
flow of user requests, a NI PXIe-5646R VST vector signal
generator and analyzer, a preamplifier with an approximate
gain of 40 dB, a Cree CGH40006-TB GaN power amplifier
with a nominal gain of 13 dB for 2 GHz, and a 30 dB
attenuator.

The complex baseband signal is sent with normalized am-
plitude. The system then adds a 2.4 GHz carrier and configures
the RMS power before amplification. The output is returned
in the baseband domain.

Predistortion begins with the generation of a bitstream,
which is modulated using QAM and multiplexed via OFDM.
The resulting signal is then amplitude-normalized to meet
system requirements before transmission. After amplification,
the signal goes through the synchronization process followed
by predistortion using an indirect learning architecture [22].
The resulting signal is then relayed to the amplification system,
as illustrated in Figure 2.

Bit
QAM |—»| OFDM .
Generator
”""Jﬁ

Predistortion|

Fig. 2.

DPD structure using RF WebLab features.

V. EXPERIMENTAL RESULTS

For comparison purposes, tests were performed with the
RLS with MP, RLS with CT, and EX-QKRLS algorithms. The
experiment considered only a single predistortion loop, with
the algorithm being implemented sample by sample.

For the test, a signal with 16-QAM modulation and an
OFDM scheme was used, where the bandwidth is 40 MHz,
with 1272 subcarriers spaced 30 kHz apart and a cyclic prefix

of 144 samples. For this experiment, an oversampling factor
of 3 was utilized. The RMS power defined for the input signal
and delivered to the signal generator was -22 dBm.

First, DPD was performed with the RLS algorithm with MP
and CT. For comparison purposes, all tests were performed
with a forgetting factor of 0.99999 and, based on the study
carried out in [23], a fifth-degree polynomial with a memory
depth of 3 was used.

In the test with the EX-QKRLS algorithm, the parameters
are as follows: o, = 0.9, 6 = 0.3, with a scale factor
referring to the transition matrix of Equation (6) equal to 1,
a regularization parameter equal to 0.01 and the ratio of the
noise variances equal to 1074,

As a measure of performance, Figure 3 presents the signal
spectra, highlighting the harmonic attenuation obtained with
the application of pre-distortion for each algorithm tested. For
reference, the spectra of the original signal and the amplified
signal without DPD are also shown.

Figure 4 presents the constellation diagram visually showing
the decrease in error vector magnitude (EVM) when using the
EX-QKRLS algorithm. The EVM is mathematically defined
as EVM = , [ Zaglen—bult
the received symbol, and N is the number of symbols. The
EVM values of the tests of each algorithm can be seen in
Table II.

Finally, Figure 5 depicts the PA normalized gain with and
without the use of EX-QKRLS. This graph relates the input
power to the resulting gain, considering a measured input
saturation power of 28.45 dBm. The 1-dB compression point
is clearly visible without DPD, while the predistorted case
shows effective linearization of the PA response.

, where s,, is the ideal symbol, §,,
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Fig. 3. Spectrum of input signal and amplified signals for each type of DPD.

TABLE II
EVM COMPARISON TABLE

|| EVM w/o DPD | EVM w/ DPD | Difference

RLS MP 8.74% 6.02% 2.72
RLS CT 8.74% 5.93% 2.81
EX-QKRLS 8.74% 6.17% 2.57
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Fig. 4. Input signal constelation (in red), after amplification without DPD
(green) and with predistortion using the EX-QKRLS Algorithm (blue).
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Fig. 5. Gains of amplified signals without DPD (blue) and with DPD (red).

VI. CONCLUSIONS

This work demonstrated that the EX-QKRLS algorithm
presents similar performance to those of algorithms RLS MP
and RLS CT in modeling the nonlinearity of the power am-
plifier, but without relying on a known polynomial structure.
Such singularity makes the DPD technique a viable option
for communication systems with an unknown PA behavior,
ensuring efficient adaptation to different operating conditions.

Furthermore, the EX-QKRLS algorithm, by presenting this
characteristic of adaptability to any type of nonlinearity, be-
comes an essential factor for systems such as software-defined
radio and cognitive radio, where operability in different wave-
forms is required.

It is worth noting that kernel-based algorithms perform
better in modeling the nonlinearity of power amplifiers that
have little memory delay. This is the case for a signal from the
RF WebLab [23], whose behavior is well captured by kernel-
based models due to its low memory depth.

For future work, a new algorithm derived from EX-KRLS
is under development, incorporating QR decomposition tech-
niques using Householder reflectors. The goal is to improve
the numerical stability of the EX-KRLS algorithm, making it
more robust under ill-conditioned scenarios and more suitable
for real-time digital predistortion implementations.
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