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Neural Estimation of Information-Theoretic
Generalization Bounds: Limitations and Guidelines

Nathália Barros Viana, Eduardo Nunes Velloso, Max Henrique Machado Costa, and
José Cândido Silveira Santos Filho

Abstract— We investigate practical challenges of estimating
information-theoretic generalization bounds using neural mutual
information estimators. Focusing on a Gaussian mean estima-
tion task, we compare input–output mutual information (MI),
individual-sample mutual information (ISMI), and conditional
mutual information (CMI) formulations under varying sample
sizes and regularization strategies. Through empirical analysis,
we identify underfitting regimes, characterize the bias–variance
behavior across estimators, and highlight sample complexity
ceilings that limit estimation accuracy. Our results provide
practical guidelines for selecting estimators and tuning Monte
Carlo parameters to achieve reliable generalization bounds in
low-data settings.
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I. INTRODUCTION

A major concern when analyzing algorithms for supervised
learning problems is their generalization ability—that is, the
model’s capacity to transfer learned patterns to unseen data.
Computing the expected generalization error exactly is infea-
sible, but it can be upper-bounded if the learning task satisfies
certain conditions.

These conditions are typically divided into (i) com-
plexity measures (e.g., Vapnik–Chervonenkis dimension and
Rademacher complexity) and (ii) algorithmic stability guar-
antees. The former were foundational for the early studies
of generalization, but scale poorly with increased model
complexity and do not account for the internal dynamics
of the learning process. For instance, they overlook implicit
regularization effects introduced by optimization algorithms
such as stochastic gradient descent (SGD). Although the latter
focuses on such algorithmic properties, it generally neglects
the data distribution, even though generalization is strongly
influenced by that.

To better characterize the intrinsic nature of learning tasks,
recent works have proposed information-theoretic conditions
for generalization [1], [2]. Interpreting the learning process as
a probabilistic communication channel where the input is a
randomly sampled dataset and the output is the corresponding
learned model, a bound on the input–output mutual informa-
tion implies generalization guarantees, which depend on both
the data distribution and the learning algorithm. Numerous
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variations of this concept have been developed in the form
of tighter generalization bounds [3]–[6], usually related to
two main aspects of the ordinary input–output dependence:
pointwise stability (capturing how much the model changes
with slight changes of individual data samples) and differential
privacy (capturing the knowledge of which samples were used
between a number of possible options), inspiring the design
of algorithms with improved generalization. Other directions
recently explored in the literature include the geometry of
the hypothesis space [7], the optimal choice of a divergence
metric [8], and the learning dynamics of iterative noisy algo-
rithms [9].

In practice, the analytical computation of this mutual infor-
mation is rarely tractable for real supervised learning prob-
lems. This means that, while the theoretical formulation of
these bounds has been widely studied, their empirical behavior
in practice remains relatively underexplored.

Historically, mutual information estimation for general
problems has been addressed through either nonparametric
approaches [10] or parametric neural networks like the Mutual
Information Neural Estimator (MINE, [11]). The former are
known not to scale well with sample size or dimension [12],
which are of critical importance for most realistic learning
tasks. The latter are scalable and flexible, but introduce a
training procedure with many distinct hyperparameter knobs
that influence the bias and variance characteristics of the final
estimator.

In this paper, considering a simple toy learning problem
— Gaussian mean estimation — we investigate the practical
effects of using neural estimators of mutual information on
the estimated generalization bounds for the mutual information
(MI, [2]), individual-sample mutual information (ISMI, [3]),
and conditional mutual information (CMI, [4]) approaches.
We evaluate the convergence, bias–variance, and complexity
characteristics of MINE and of some of its regularized variants
under different learning algorithms. Our main contributions are
guidelines on the use of MINE within the context of statistical
learning problems, highlighting failure cases to avoid and the
practical drawbacks of using theoretically tighter bounds.

II. BACKGROUND

There exists some underlying data-generating distribution µ
over a data space Z ⊂ Rd, from which N examples are
sampled independently and identically distributed (i.i.d.) to
form the training dataset S = (Z1, . . . , ZN ). A learning
algorithm is represented by a conditional distribution PW |S ,
which samples a model W from the hypothesis space W based
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on the training dataset. A loss function ℓ : W×Z → R defines
the performance metric of the model at any point in the data
space, and is used to determine the empirical and true risks,
respectively:

LS(w) =
1

N

N∑
i=1

ℓ(w,Zi) (1)

Lµ(w) = EZℓ(w, z). (2)

It is also helpful to fix the universe of possible data points
by considering the existence of a larger supersample S± =
(Z+

1 , Z
−
1 , . . . , Z

+
N , Z

−
N ) of size 2N , which is partitioned into

the actual training sample S and a ghost sample S̄ by a
random binary selection vector R ∈ {+1,−1}N , such that
S = (ZR1

1 , . . . , ZRN

N ).

A. Information-Theoretic Bounds

Let f : X × Y → R be any integrable random function
of the random variables X and Y . Specific choices of the
variables X , Y and of the function f—usually the loss or the
empirical risk—define different upper bounds on the expected
generalization error gen(µ, PW |S) ≜ EW,S(Lµ(w)−LS(w)).

The Donsker–Varadhan (DV) variational representation of
the Kullback-Leibler (KL) divergence [13] establishes an
inequality of the form

I(X;Y ) = DKL(PX,Y ||PX ⊗ PY ) (3)
≥ EX,Y λf − logEXEY exp(λf), ∀λ ∈ R, (4)

where PX ⊗ PY is the product of the marginal distributions
and λ is a tunable parameter used to tighten the bound. Given
the moment-generating function (MGF) of a centered random
variable Ωf (λ) = EXEY exp(λ(f −EXEY f)), if there exists
a convex function ψ : R → R such that

exp(ψ(λ)) ≥ Ωf (λ), (5)

then it can be shown that

EX,Y f − EXEY f ≤ inf
λ

I(X;Y ) + ψ(λ)

λ
. (6)

The right-hand side of eq. (6) has the same form as the
inverse of the convex conjugate of the function ψ, ψ∗−1(y) ≜
inft(y + ψ(t))/t. Besides the original input–output mutual
information, we focus on the two main variations that better
illustrate the concepts used for finding tighter bounds: point-
wise stability and differential privacy.

1) Input–Output Mutual Information [2]:

MI = ψ∗−1

(
I(W ;S)

N

)
. (7)

The original MI bound offers an interpretable connection
between the independence of the learned hypothesis on the
specific sampling of the data and generalization ability. In fact,
it is possible to show that bounded mutual information implies
that the algorithm satisfies an on-average stability condition.
However, the MI bound suffers from practical limitations: it
may become vacuous or infinite when the learning algorithm
is highly sensitive to the input data, especially in settings
involving continuous distributions or deterministic learners.

2) Individual Sample Mutual Information [3]:

ISMI =
1

N

N∑
i=1

ψ∗−1(I(W ;Zi)). (8)

The ISMI bound was proposed to overcome the shortcom-
ings of the MI bound by decomposing the overall mutual
information into contributions from each individual data point.
Whenever it is bounded, it has a slightly stricter pointwise
stability guarantee.

Considering the independence of each sampled Zi, we can
write I(W ;Zi|Z1, . . . , Zi−1) = I(W,Z1, . . . , Zi−1;Zi) =
I(W ;Zi) + I(Z1, . . . , Zi−1;Zi|W ) ≥ I(W ;Zi), and thus we
have, by the chain rule,

I(W ;S) =

N∑
i=1

I(W ;Zi|Z1, . . . , Zi−1) ≥
N∑
i=1

I(W ;Zi), (9)

and then, because ψ∗−1 is concave and nondecreasing, using
Jensen’s inequality, ISMI ≤ MI. In other words, the ISMI
bound is always at least as tight as the MI bound.

3) Conditional Mutual Information [4]:

CMI = ψ∗−1

(
I(W ;R|S±)

N

)
. (10)

The CMI bound addresses how much information the
learned hypothesis reveals about the specific selection of
training data, given a fixed supersample S± that restricts the
possible sample choices. It is closely related not only with
algorithmic stability but also with differential privacy.

It is possible to show that I(W ;R|S±) = I(W ;S|S±) =
I(W ;S)− I(W ;S±) ≤ I(W ;S), which naturally means that
CMI ≤ MI as well.

B. Mutual Information Estimation

Estimating mutual information from finite samples is gen-
erally challenging. A popular method uses k-nearest neighbor
(kNN) distances in probability space to estimate the entropy
of the underlying distributions [10]. While it is simple and
effective for low-dimensional settings, it scales poorly with
dimensionality, which led to the construction of estimators
based on variational bounds of mutual information.

Based on the DV representation of the KL divergence [13],
it has been shown that neural networks can be trained to
approximate the optimal function that maximizes

I(X;Y ) = sup
T

EX,Y T − logEXEY exp(T ), (11)

that is, the log-odds T ∗ = log(PX,Y /PX ⊗ PY ) + C. The
MINE estimator [11] fixes a neural network architecture,
introducing approximation error, and draws on a finite sample
of the joint distribution and the product of the marginals,
introducing estimation error. The MINE estimate Î can be
given by the following optimization problem:

Î = sup
θ∈Θ

1

M

M∑
m=1

T
(m)
θ − log

1

M

M∑
m=1

exp(T̃
(m)
θ ), (12)

where T (m)
θ is the statistics network parametrized by θ and

evaluated on the joint distribution (correctly matched pairs
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(x, y)), and T̃
(m)
θ is the same but evaluated on the product

of the marginals (shuffled pairs (x̃, ỹ), drawn independently).
Although MINE is a provably consistent estimator, it has

known limitations regarding variance, its need for a large
number M of samples from the distribution, and training
difficulties. Some of these issues have been addressed in the
form of small variations around its original concept. The
Data-Efficient MINE (DEMINE, [14]) introduces the idea of
using a separate validation set over which the estimation is
computed, with the goal of avoiding overfitting. The Smoothed
MI Lower-bound Estimator (SMILE, [15]) clips the log-
partition term exp(T̃ ) based on a parameter τ to control the
variance caused by outliers. The Regularized MINE (ReMINE,
[16]) controls the drift of the constant offset in the log-odds
function by adding an L2 regularization term with strength λ.
Alternatively, the Discriminative Estimator of MI (DEMI)
reframes estimation as a binary classification problem between
joint and marginal samples that directly approximates T ∗,
bypassing the log-partition altogether. Each of these methods
trades off bias, variance, and training cost in different ways,
offering practical tools for improving MI estimation in finite-
data settings.

III. EXPERIMENTAL FRAMEWORK

A. Benchmark Task: Gaussian Mean Estimation

To obtain tractable ground truths for assessing the es-
timators, we focus on the well-behaved task of learning
an unknown mean parameter from a finite collection of N
i.i.d. Gaussian samples Z ∼ N (w∗, σ2). We consider the mean
squared error loss, ℓ(w, z) = (w − z)2.

The classical estimator of the mean of a Gaussian distribu-
tion from a finite number of samples is the sample average,
which corresponds to the maximum likelihood estimator. To
introduce randomness, we added a small Gaussian noise:

W =
1

N

N∑
i=1

Zi + ε, (13)

with ε ∼ N (0, σ2
ε). This means that PW |S is a Gaussian

distribution with variance σ2
ε centered on the sample average.

This setup reflects the common use of intentional noise in al-
gorithms, either as a regularization mechanism (e.g., dropout)
or as part of the optimization process (e.g., SGD).

Under the Gaussian data distribution, estimation noise af-
fects both true and empirical risks equally, leading to can-
cellation, and the expected generalization error can be shown
to be

gen(µ, PW |S) =
2σ2

N
, (14)

and, taking the loss variance σ2
ℓ = (1 + 1/N)σ2 + σ2

ε , the
MGF of the centered loss is simply that of a σ2

ℓχ
2
1 random

variable, such that

log Ωℓ(λ) = −1

2
log

(
1− 2λσ2

ℓ

)
− λσ2

ℓ , (15)

which is upper bounded by ψ(λ) = σ4
ℓλ

2 for λ < 0. Therefore,
the mutual information bounds can be found from the inverse
convex conjugate ψ∗−1(y) = 2σ2

ℓ

√
y.

Fig. 1: Estimated MI vs. number of Monte Carlo samples M , for σε = 0
(deterministic learner) and different training set sizes N .

For these distributions, analytical expressions for the rele-
vant mutual information terms are available:

I(W ;S) =
1

2
log

(
1 +

σ2

Nσ2
ε

)
(16)

I(W ;Zi) =
1

2
log

(
σ2/N + σ2

ε

(N − 1)σ2/N2 + σ2
ε

)
(17)

I(W ;R|S±) = h(W |S±)− 1

2
log

(
2πeσ2

ε

)
. (18)

In the special case where σ2
ε = 0, the learner becomes a de-

terministic function of the training set S, with PW |S becoming
a singular delta function, so that the mutual information terms
reduce to the following (see [9]):

I(W ;S) = ∞ (19)

I(W ;Zi) =
1

2
log

(
1 +

1

N − 1

)
(20)

I(W ;R|S±) = N log 2. (21)

B. Neural Estimator Implementation

To produce estimates using MINE, we simulated M Monte
Carlo realizations of datasets S, sampling a corresponding
value of W from PW |S each time, and we separate half of
them into a holdout validation set. We implement MINE’s
statistics network with three fully connected layers with 100
units each, using the exponential linear unit (ELU) activation
function to avoid dead units. We used the Adam optimizer
for training with a batch size chosen as 10% of the total value
of M , and an early stopping strategy triggered after 10 epochs
without improvement.

Since the learning algorithm analyzed is not sensitive to
data point ordering, all N values of I(W ;Zi) are identical by
symmetry. This significantly reduces the cost of estimating the
ISMI bound, as it suffices to use only a single point for the
estimation.

IV. EMPIRICAL ANALYSIS AND DISCUSSION

A. Sample Complexity Ceiling

In the degenerate deterministic scenario with σε = 0,
although the true input–output MI is infinite, any approxi-
mation determined by an estimator from a finite number of
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samples will be finite. Figure 1 indeed shows that the finite
MINE estimate of I(W ;S) = ∞ grows logarithmically as M
increases. A similar result was argued by [17] in the context
of an absolute ceiling of order O(logM) for MI estimated
with high confidence by any lower-bound distribution-free
estimator. The actual ceiling may not be attained by any
specific statistics network implementation, but the behavior
observed for this infinite MI scenario empirically supports a
not yet demonstrated logarithmic growth law of the saturation
value for the DV family of lower-bound estimators [18].
We also observe that as the dataset size N increases, the
relationship between W and S is harder to detect, implying
an offset in M .

B. Bias and Variance

(a) Bias2, MI (b) Bias2, ISMI

(c) Variance, MI (d) Variance, ISMI

Fig. 2: Normalized bias and variance of estimated MI and ISMI vs. number of
Monte Carlo samples M , for σε = 0.1 (noisy learner) and different training
set sizes N .

For the more general σε > 0 case, we investigate the bias–
variance decomposition of the estimation error:

E(Î − I)2 = (EÎ − I)2 +Var(Î), (22)

where we approximate the expectations and variance using a
finite number K = 50 of realizations of the estimation process.

The resulting curves are shown in Figure 2 as functions
of M for different values of N , for both the ordinary MI
and the ISMI. The curves are normalized by the analytical
value of I squared, as shown in eqs. (16) and (17). The main
observation from these plots is the existence of a well-defined
region of low number of samples M where the statistics
network underfits. In fact, as can be seen by the normalized
bias in this region approaching unity, all estimates stay close
to zero within this region. This likely occurs because the
empirical joint distribution becomes very similar to the product
of marginals when the number of samples is small. Another
reason is the fact that, as the number of samples is reduced,
the loss landscape becomes dominated by noise, and trivial
constant solutions tend to be favored to minimize risk.

In addition to that, we notice that this critical threshold
of M scales with the input dimension N . Once M exceeds

that threshold—say, Mcrit(N)—the statistical bias due to finite
sampling becomes dominant and the squared bias term decays
proportionally to 1/M . This scaling is consistent with the
finite-sample bias analysis of [11].

The equivalent change in behavior in the variance curves
can be interpreted as a transition between a state with a high
probability of underfitting when M ≪ Mcrit(N) to a regular
1/M scaling region when M ≫ Mcrit(N). In the transition
region, some realizations of the randomly drawn input will
underfit the statistics network with varying probabilities, and
the resulting spread of estimates between zero and a tight
lower bound leads to increased variance.

When contrasting the curves for MI and ISMI, we draw
attention to two observations: firstly, it is significantly easier
to avoid underfitting for the ISMI estimates, given the lower
(constant with N ) dimensionality of the required inputs;
secondly, since the true MI values are much lower for ISMI
and the estimator variance is expected to scale with exp(I),
the scaling in the operational region seems to quickly reach
a plateau due only to the capacity-bounded approximation
error. The fluctuations in bias for the ISMI estimator possibly
originate from the high sensitivity to the choice of individual
data points.

(a) Bias2, MI (b) Bias2, ISMI

(c) Variance, MI (d) Variance, ISMI

Fig. 3: Normalized bias and variance of estimated MI and ISMI vs. number
of Monte Carlo samples M , for σε = 0.1 (noisy learner), N = 20, and
different MINE variants.

Another aspect that influences the bias-variance behavior of
the neural estimator is regularization, such as the techniques
mentioned in Section II-B. Figure 3 shows the same curves as
Figure 2, but now, instead of varying N , we keep it constant
at an intermediate value of N = 20 and compare the effects
of different MINE variants. We use τ = 2 for SMILE and
λ = 0.25 for ReMINE, based on the range used by the
original papers and on the average mutual information values
to be estimated; we also use the discriminative variant DEMI
and a combined SMILE+ReMINE variant employing both
log-partition clipping and L2 regularization simultaneously.
The effect of low τ in both SMILE variants is particularly
noticeable for higher M , where the introduced clipping forces
a bias plateau. DEMI manages to present slightly lower
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bias and variance, since it sidesteps completely the need to
approximate the log-partition, but that comes with a slightly
increased training cost. However, this behavior of DEMI as
well as the regularization effect introduced by ReMINE appear
to be quite negligible for this low-dimensionality problem with
relatively low MI values. There seems to be no significant
effect of these methods on Mcrit(N), although this may not
hold for tasks with higher dimensionality.

C. Conditional Mutual Information Estimation

(a) σε = 0.1 (noisy learner) (b) σε = 0 (deterministic learner)

Fig. 4: Estimated CMI vs. training set size N , for different numbers of
conditional contexts M0.

The CMI I(W ;R|S±) = ES±I(W ;R|S± = s±) requires,
in addition to the Monte-Carlo budget M , a split into M0

independent supersamples and L draws of the selection vector
R per supersample, with M = M0L. The law of total
variance gives Var(Î) = ES±(Var(Î|s±))+Var(ES±(Î|s±)).
Increasing L (while decreasing M0) reduces within-context
noise (first term) but inflates the between-context component
(second term).

Figure 4a verifies this trade-off empirically for the noisy
learner with σε = 0.1. We approximate the ground truth by
using rectangular numerical integration to compute the mixture
of Gaussians differential entropy h(W |S±) in eq. (18). The
curve with M0 = 5 (and therefore L = 104) tracks the ground
truth almost exactly up to N = 15, whereas M0 = 1 overfits
(high between-context bias) and M0 = M underfits (high
within-context variance). The observed behavior for the curves
with few draws L converging to zero as N increases reflects
the observed underfit regime of Section IV-B, suggesting the
existence of an analogous critical value Lcrit(N) at which the
error is at its minimum.

For the deterministic learner, the true conditional MI equals
N log 2 nats. Figure 4b shows that all settings severely un-
derestimate this linear trend; estimates saturate around 4 nats.
This failure once again relates to the sample complexity ceiling
of [17] illustrated for the infinite MI in Section IV-A.

V. CONCLUSIONS

We have provided empirical guidelines for estimating
information-theoretic generalization bounds for supervised
learning settings. In particular, our results bring empirical
evidence for the logarithmic saturation of the estimated mu-
tual information, which limits its ability to track increasing
functions of N . The bias–variance analysis highlights the
need for sufficient Monte Carlo sampling relative to N to
avoid underfitting and being highly biased towards zero. More

specifically, this has implications for the procedure used to
estimate CMI bounds, as there appears to be an optimal
balance between the number of conditional contexts M0 and
the number of draws per context L.

Higher-dimensional problems may be of particular interest
in future work to better characterize the differences between
variational estimators. Additionally, future work will compare
how different bounds behave for algorithms with and without
specific algorithmic stability guarantees, in order to assess the
practical relevance of tightness conditions in each case.
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