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On Performance of Massive MIMO Systems with
Solid-state Amplifiers

Jodo Vitor C. Pessoa and Rafael S. Chaves

Abstract— This paper analyzes the impact of analog front-end
nonlinearities on the bit-error rate (BER) performance of massive
maultiple-input multiple-output (MIMO) systems, mainly focusing
on the power amplifiers (PAs) nonlinearities of the solid-state am-
plifier. Simulation results show that the PA nonlinearities degrade
system BER, yielding SNR losses of approximately 2.3 dB to
5.1 dB depending on the number of user equipment, modulation
order, and precoding or decoding schemes employed. The findings
confirm the necessity of nonlinear compensation to guarantee the
viability of massive MIMO in practical applications.

Keywords— Massive MIMO, analog front-end, power ampli-
fiers, BER.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) has been
crucial for the technological advancement of mobile networks,
enabling a wide range of innovative applications across various
sectors by delivering high-speed and low-latency communi-
cations [1], [2]. Moreover, massive MIMO relies on simple
linear precoding and decoding [3], effective power-control
policies [4], [5], and in some situations user selection [6],
[7]. Although it is a powerful technique, massive MIMO also
introduces new challenges that must be studied to achieve a
comprehensive understanding of its nature [8].

The deployment of massive MIMO systems necessitates
large antenna arrays at the base station (BS), significantly
increasing hardware costs. Although high-quality components
improve system performance, they substantially raise expenses
for BS and user equipments (UEs). Conversely, opting for
lower-quality hardware introduces additional distortions due
to the nonlinear behavior of analog front-end circuits, thereby
degrading the system’s spectral efficiency (SE) [9]. Such
hardware impairments critically affect channel reciprocity, a
key assumption for enabling efficient operations such as spatial
multiplexing and beamforming. When reciprocity is com-
promised, channel estimation becomes less accurate, directly
impairing the overall system performance [10].

One of the main sources of nonlinearity in massive MIMO
systems comes from the power amplifiers (PAs), as well
as analog-to-digital (AD) and digital-to-analog (DA) con-
verters in the radio frequency chains [11]. These hardware
imperfections introduce nonlinear distortions that reduce en-
ergy efficiency and significantly impair channel estimation
accuracy and beamforming performance. Furthermore, high-
order digital modulation schemes yield high peak-fo-average
power ratio (PAPR) signals, which are prone to hardware
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nonlinearity. This high-PAPR issue is particularly pronounced
in orthogonal frequency-division multiplexing (OFDM) sys-
tems, commonly used in modern wireless communications
due to their robustness against frequency-selective fading. In
massive MIMO systems, which often leverage OFDM systems,
high-PAPR signals remain a critical challenge [12]. These
signals are especially susceptible to nonlinear distortions from
PAs and AD/DA converters, exacerbating the degradation of
spectral efficiency and further complicating accurate channel
estimation and beamforming operations.

In the literature, several models have been proposed to
characterize PA nonlinearities, including the Volterra series
model [13], memory polynomial models [14], and Saleh’s
model [15], each offering different trade-offs between com-
plexity and trustworthiness. These models are commonly used
to assess the impact of nonlinearities on the SE and capacity of
massive MIMO systems. Works investigating the influence of
hardware impairments on system performance propose calibra-
tion techniques [16], distortion compensation strategies [17],
and theoretical performance bounds for systems with hardware
imperfections [18], [19]. However, this work departs from
stochastic modeling by employing a deterministic, physically
consistent PA model to enhance accuracy. This paper restricts
the analysis to the nonlinear effects introduced by PAs, as
they are typically the most dominant source of hardware-
induced distortions in the transmission chain [20]. While AD
and DA converters also contribute to system nonlinearities,
their modeling often requires distinct treatment, involving
quantization noise, which is beyond the scope of this study.
Simulation results show that the PA nonlinearity degrades
the BER performance, particularly with high-order modulation
and large numbers of UEs scenarios. The system is robust to
some nonlinearities in the downlink, yielding an SNR loss
smaller than 0.3 dB at a BER of 10~3. On the other hand, the
system is sensitive to the nonlinearities in the uplink, yielding
an SNR loss up to 6.5 dB at a BER of 1072,

The remainder of this work is structured as follows: Sec-
tion II overviews massive MIMO fundamentals, detailing the
system model. Section III presents the nonlinear amplifier
model. Section IV presents simulation results and analysis.
Finally, Section V concludes the paper and outlines directions
for future research.

Notation: Vectors and matrices are represented by boldface
lowercase and uppercase letters, respectively. The notation
XT, X* and X stand for transpose, complex conjugate, and
Hermitian (conjugate transpose) operations on X, respectively.
Diag (x) is a diagonal matrix with x on its main diagonal.
The symbols C, R, and R denote the sets of complex, real,
and non-negative real numbers, respectively. The set CM*%
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Fig. 1: Signal model for massive MIMO considering the PA nonlinearity.

denotes all M x K matrices comprised of complex-valued
entries. The symbol I, denotes an M x M identity matrix
and Op;«x denotes an M x K zero matrix. The symbols
CN(m, C) and U(a,b) respectively denote a circularly sym-
metric Gaussian distribution with mean m and covariance
matrix C and a uniform distribution between a and b. The
notation E {z} stands for the expected value of x.

II. MASSIVE MIMO SYSTEM MODEL

Consider a generic single-cell massive MIMO system using
time-division duplex (TDD) where K single-antenna UEs com-
municate with a BS equipped with M antennas. The system
can operate in the downlink and the uplink. Additionally, the
power amplifier (PA) nonlinearity is considered only in BS
during the downlink and only in the K UEs during the uplink.
Fig. 1 illustrates the massive MIMO transmission considering
the PA nonlinearity operating in the downlink and uplink.

A. Downlink

In the downlink, the BS transmits the precoded signal given
by
x = WDiag (1)’ s, (1)

where s € CE*1 c CK*1 is the transmitted signal vector to
the UEs, W € CM*X s the precoding matrix with normalized
columns, and 1 € Rf *1 is the downlink power allocation
vector. Additionally, due to power limitations

E{XHX} =1. ()

The precoded signal is transmitted through the downlink
channel and received by the UEs. The received signal by the
UEs is

y=+pH f(X)+V
= /pH" f(WDiag (n)"/?s) + v, (3)

where f : C — C is the nonlinear model of the PAs at UEs,
p € R, is the downlink SNR, v ~ CN(Oprx1, 1) is the
additive white Gaussian noise (AWGN) at the UEs antennas,
and HY € CM*X s the downlink channel matrix between
the BS antenna array and the UEs.

It is worth highlighting that linear precoding algorithms
are no longer optimal regarding spectral efficiency due to

PA nonlinearity. Even with an ideal linear precoding and
favorable propagation conditions, the PA nonlinearity impairs
the transmitted signal estimate.

B. Uplink
In the uplink, the received signal at the BS is

¥ = /7 Hf(Diag (7)"/*8) + v, @)
where § € CK*1 ¢ CK*1! is the transmitted signals by the
UEs, 1 € Rf *1 is the uplink power allocation vector, j € R
is the uplink SNR, v ~ CN'(0prx1,1Ias) is the AWGN at the
BS antennas, and H € CM*K ig the uplink channel matrix
between the BS antenna array and the UEs. Moreover, the UEs
transmit signals with unit power, meaning that

E{5%/*} =1, VkeK, (5)

where £ = {1,2,--- , K} is the set of UE indices.

The BS decodes the received signal to recover an estimate
of the transmitted signal. The estimate of the received signal
can be expressed as

s =Dy
= \/pDH{ (Diag (77)'/* §) + D¥, ©6)
where D € CK*M g the linear decoding matrix with

normalized columns.

C. Channel Model
The massive MIMO channel for the k-th UE can be written

as
K 1
h, = hLoS hN LoS 7
FEVRELE TV e ™ o M

where hL°S represents the small-scale fading of the line-of
sight (LoS) component, dependent on the geometry of the
antenna array at the base station, hi*5 ~ CN(0, ByIx)
represents the small-scale fading of the non line-of-sight
(NLoS) component, 3 € Rf *1 s the large-scale fading
component, and x € R, is the Rician factor that defines the
ratio between the LoS and NLoS components [21]. In this
work, the large-scale coefficient ), [dB] is known at the BS
and defined as [22]

dy,
Bk = —148 — 37.6 loglo (1km> 5 (8)
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where d;, € Ry is the distance between the kth UE and the
BS.

The channel model in (7) is the so-called uncorrelated
Rician fading model, which considers the presence of both LoS
and NLoS components. The LoS component depends on the
BS antenna array steering vector. For an M -antenna uniform
linear array (ULA), the LoS channel for the k-th user is given
by

h]];oS:\/ﬁ:[l ejrrsin(ek)

where 0, € U(—m, ) is the angle-of-arrival for the k-th user.

ejrr(M—l) sin(Gk)] T . (9)

III. SOLID STATE AMPLIFIER MODEL

In this work, the nonlinearities are assumed memoryless,
an approximation valid for moderate bandwidths [23]. The
analysis focuses exclusively on the influence of nonlinearities
within the signal bandwidth, disregarding spectral regrowth.
For a complex baseband input, the general relationship be-
tween the input and output of the nonlinearity f : C — C
can be expressed as

z = f(z) = fa(|z])el@felzD (10)

where |x| € Ry is the modulus of the baseband signal
x, ¢ € [—m,m| is the phase of the baseband signal =z,
fa : Ry — Rand fy : Ry — Rrepresent the amplitude-
to-amplitude (AM-AM), and amplitude-to-phase (AM-PM)
transfer functions, respectively.

Ideal

Nonlinearity Amplifier

r —>

fC) z

Fig. 2: Channel model with non-linear amplifier application.

Figure 2 shows the simplified model of a power amplifier
considering the effect of nonlinearity. The input x initially
is processed by a nonlinear function f(-), which introduces
distortions or nonlinear effects typical of real power amplifiers.
Then, the resulting signal is amplified by an ideal amplifier
with gain G, yielding the output z. Considering the impact
of nonlinearities in system modeling, it is essential to evaluate
how they affect signal transmission in massive MIMO systems
and capture the distortions generated by the hardware. This
paper uses the solid-state amplifier, whose nonlinearity is only
the AM-AM distortion given by [24]

fa(lz]) = ———————, (11)

where p > 0 is an adjustment parameter that controls the
smoothness of the nonlinear function, and A € R, is the
saturation level. When p takes high values, the model con-
verges to the ideal clipping amplifier with saturation level A.
On the other hand, for low values of p, the transfer becomes
smoother. Typically, p ranges from 1 to 3 [24]. It is worth
highlighting that when A — oo, the PA becomes closer to the
ideal amplifier.

TABLE I: Simulation Parameters

Parameters Value

Number of antennas M = 256
Number of UEs K € {64,256}
Constellation 64-QAM and 256-QAM
Number of blocks N =500
Array geometry ULA

Channel model Rician Fading
Rician factor k=10 dB

BS Power 10 W

UE Power 200 mW

BS and UEs Antenna Gain 0 dBi

Noise Figure 9 dB

Effective Downlink SNR
Effective Uplink SNR
Precoding algorithms ZF and MMSE
Decoding algorithms ZF and MMSE
Monte-Carlo (UEs position) 10
Monte-Carlo (Small-scale fading) 10

pa € (10,5, , 30} dB
Pul € {_107 =5, 730} dB

IV. SIMULATION RESULTS

The performance is assessed via numerical simulations by
evaluating the effect of the nonlinearity model presented in
Section IIT on the BER and the constellation of the received
signals for downlink and uplink. All the codes used in this
work are available on GitHub.! The nonlinearity was evaluated
with equal power allocation for different scenarios regarding
the number of antennas and UEs with zero-forcing (ZF)
and minimum mean squared error (MMSE) precoding and
decoding algorithms.

A. Simulation Parameters

For the simulations, a 1000-radius hexagonal single-cell
massive MIMO system with the BS equipped with a ULA with
M = 256 antennas and K € {64,128,256} single-antenna
UEs was used. The transmitter sent N = 500 blocks of a Q-
QAM constellation with @ € {64,256}. The communication
channel was Rician distributed with x = 10 dB, and the carrier
frequency was f. = 2 GHz. The radiated power at the BS and
the UEs were 10 W and 200 mW, the BS and UEs antenna
gains were 0 dBi, and the noise figure was 9 dBi at both BS
and UEs. With this configuration, a UE at the cell edge has
the following equivalent downlink and uplink SNRs

pal = pB =132 dB — 148 dB = —16 dB,
pul = pB =115 dB — 148 dB = —33 dB.

(12)
(13)
Thus, in the simulations for both downlink and uplink, the
BER was evaluated for pq1, pu € {—10,—5,---,30} dB. The
BER was calculated using 10 realizations of UE positions, i.e.,
LoS channel, and for each UE position setup, 10 realizations

of the small-scale fading were generated. Table I summarizes
all the key parameters used in the simulations.

B. Bit-error Rate Performance

This subsection analyzed the downlink and uplink BER for
varying SNR, considered perfect channel state information

Thttps://github.com/joaovcpessoa/massive_mimo_afe_impact
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(CSI) knowledge, and a 64-QAM constellation. Fig. 3 shows
the uplink BER versus SNR for K € {64,128,256}, A €
{Ideal, 1,2}, and ZF and MMSE decoders. One can observe
in Figs. 3a and 3b that the BER degrades as expected with
increasing K. The different decoders perform similarly, with
the main difference being for the case of K = 256, where the
MMSE decoder yields an SNR gain of ~ 15.8 dB at a BER
of 10~!. Moreover, one can observe a significant sensitivity
to the PA saturation level, as for A = 1, the BER degrades
substantially, regardless of the value of K and the decoding
algorithm. For A = 2 and K = 64, the BER is worse than
the BER for the ideal PA, yielding an SNR loss of ~ 6 dB
and ~ 6.3 dB at a BER of 10~° for ZF and MMSE decoders.
On the other hand, for K = 128, the nonlinearity with A = 2
yields an SNR loss of ~ 6.5 dB and ~ 6.1 dB at a BER
of 1075 for ZF and MMSE decoders. These results indicate
that for cases with M >> K and a high saturation level, the
PA nonlinearity impact on the BER does not scale with the
number of UEs K.

0

10

—K =64 —Ideal
---K=128—A=10
e ' = 256 A=20

—K =64 —Ideal
---K=128—A=10
wene K = 256 A=20

106 : 10° :
10 0 10 20 30 10 0 10 20 30

SNR (dB) SNR (dB)
(a) ZF. (b) MMSE.

Fig. 3: Uplink BER versus SNR for K € {64, 128,256}, A €
{Ideal, 1,2}, and ZF and MMSE decoders.

Fig. 4 illustrates the downlink BER versus SNR for
K e {64,128,256}, A € {Ideal,0.5,1}, and ZF and
MMSE decoders. Similar to the uplink, one can observe in
Figs. 3a and 3b that different precoders do not yield any
major difference in the BER, unless the case with K =
256, where the MMSE precoder improves the performance
when the nonlinearity is considered. Regarding the impact of
the nonlinearity on the BER, the downlink exhibits reduced
sensitivity to PA nonlinearities due to the power allocation and
the high number of antennas. For a saturation level of A =1
and M < K, the nonlinearity slightly hinders the BER for
both ZF and MMSE precoders, yielding an SNR loss smaller
than 0.3 dB at a BER of 10~2. On the other hand, for a
stronger nonlinearity with A = 0.5, the precoders achieve an
SNR loss lower than 0.7 dB and 3.2 dB at a BER of 1073 for
K =64 and K = 128, respectively.

C. Nonlinearity Effects on the Constellation

This subsection evaluates the impact of the PA nonlinearity
on the decoded signal constellation in the uplink. Fig. 5 shows
the decoded signal constellation at the BS for 64 and 128-
QAM modulations and A € {Ideal, 0.5,1.0,2.0}. The SNR
was fixed in 30 dB for the simulations since we aimed to
evaluate solely the PA nonlinearity impact. One can observe

0
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S K=128—A=05 \
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10°? * 10° —
-10 0 10 20 30 -10 0 10 20 30
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(a) ZF. (b) MMSE.

Fig. 4: Downlink BER versus SNR for K € {64, 128,256},
A € {Ideal,0.5,1}, and ZF and MMSE precoders.

in the figure that the decoded signal is attenuated in amplitude
and does not have any phase shift, which is expected because
the SSA has an AM-AM transfer function; for both constel-
lation sizes, decreased A yields more distortion in symbols
close to the vertices of the constellation, placing the symbols
in a circle. The symbols in the vertices are more susceptible
to the effect of the nonlinearity because they have a higher
amplitude. It is worth highlighting that the symbols close to
the constellation center suffer from the PA nonlinearity, though
they are not close to the saturation level.

V. CONCLUSION

This paper comprehensively analyzed the bit-error perfor-
mance of massive MIMO systems with a solid-state amplifier,
including a mathematical system description when the PA non-
linearity is included. Simulation results measured the impact of
the PA nonlinearity in terms of SNR loss. The results showed
that linear signal processing for precoding and decoding was
not able to estimate the signals properly, albeit there were
cases, mainly in the downlink, where the linear precoding
yielded similar results to the ideal PA. Future works may
explore the integration of nonlinear channel estimation tech-
niques and the design of machine learning-based precoders and
decoders to mitigate the impact of the observed nonlinearities.
In particular, some deep learning models have shown promise
in learning complex nonlinear mappings and can be employed
to approximate optimal precoding and detection strategies in
the presence of PA distortions and channel estimation errors.

AKNOWLEDGEMENTS

This study was financed by FAPERJ - Fundag¢do de Amparo
a Pesquisa do Estado do Rio de Janeiro, Projeto FAPERJ E-
26/210.157/2023. The Brazilian Research Councils CAPES
and CNPq have also supported this work.

REFERENCES

[11 O. Edfors, L. Liu, F. Tufvesson, N. Kundargi, and K. Nieman, Signal
Processing for 5G: Algorithms and Implementations, pp. 189-230.
PublisherJohn Wiley & Sons Inc., Aug. 2016.

[2] Y. Huo, X. Lin, B. Di, H. Zhang, F. J. L. Hernando, A. S. Tan,
S. Mumtaz, Ozlem Tugfe Demir, and K. Chen-Hu, “Technology Trends
for Massive MIMO towards 6G,” 2023.

[3] T.L. Marzetta, “Noncooperative Cellular Wireless with Unlimited Num-
bers of Base Station Antennas,” IEEE Trans. Wirel. Commun., vol. 9,
pp. 3590-3600, Nov. 2010.



XLII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

8 ‘ 8 8 :
. . . . - . . Q Py . - . . . . ° -
6 Wt s, 6 of ~ " T
. ‘\‘ « ®e e o ', . . . . e . P S T T
L & L L i
¢ . . . e . . ¢ o . . . e . . " N P S S
- -
2t . . . - 2 2t 1
- . . . . . « o . . . . . . e e . . s o® ¢ o
oo oo oo 1
-‘. ; . . . . -.“ . . . . . . . oo o® ' - .. . [
2F 2+ 2F 4
P @ e v e e e e~ e e o s e e e s
4 4 14 . ) R S
-4r - Y -4r -4r 7
. ,’ o ge s .“\ . . e e e e . A T S S S
-6 6 6+ ]
AN L TR A T < J S N A
5 ‘ 5 ‘ ‘ ‘ ‘ ‘
‘10 5 0 5 10 ‘10 5 0 5 10 210 5 0 5 10
I 1 1
(a) 64-QAM and A = 0.5. (b) 64-QAM and A = 1. (c) 64-QAM and A = 2.
20 T T T 20 T T T 20 T T T
t e e e e o e o e o s e e o o 5t e e o o o a g PRI S 5t o . .. SRR
15 “ e e w‘i‘ Hire s + o ! .« . oL v X 1¢% » . . ! .\:\‘:‘::\ ' :;:'-‘:',‘_/.
| LNl e, | - N e e e A .. NN SR S I M
O N Y R R RN SRR e O SirEiriiiisacs
5h .3:.. AP . 5h ww T o o s e o o s e s 8% . 5h . .
5 -—ii . 5 AN O S o iz
0 ST EIRSEE ] LLoios of 2
5 e F - o o o o o o e e o o o . 5+ o »
L2t 3 5 P
BT s S0 L el L TN aof el
-15+ « o o o -15 e e e s sl T ENL ... . -15+ . .
-20 . - . -20 . - . -20 . - .
-20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20

(d) 256-QAM and A = 0.5.

(e) 256-QAM and A = 1.

I
(f) 256-QAM and A = 2.

Fig. 5: Comparison of the decoded signal constellation at the BS in the uplink for 64-QAM and 256-QAM with a PA saturation

of A € {Ideal,0.5,1,2}. The colors in the figures stand for — Ideal, — A = 0.5,

(4]

(3]

(6]

(7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, and
F. Tufvesson, “Scaling Up MIMO: Opportunities and Challenges with
Very Large Arrays,” IEEE Sig. Process. Mag., vol. 30, pp. 40-60, Jan.
2013.

R. S. Chaves, E. Cetin, M. V. S. Lima, and W. A. Martins, “On the
Convergence of Max-Min Fairness Power Allocation in Massive MIMO
Systems,” IEEE Commun. Lett., vol. 24, pp. 2873-2877, Dec. 2020.
R. S. Chaves, M. V. S. Lima, E. Cetin, and W. A. Martins, “User
Selection for Massive MIMO under Line-of-Sight Propagation,” IEEE
Open J. Commun. Soc., vol. 3, pp. 867-887, May 2022.

R. S. Chaves, E. Cetin, M. V. S. Lima, and W. A. Martins, “Fading-
ratio-based Selection for Massive MIMO Systems under Line-of-sight
Propagation,” Wirel. Netw., vol. 28, pp. 3525—-3535, Jul. 2022.

M. Matthaiou, O. Yurduseven, H. Q. Ngo, D. Morales-Jimenez, S. L.
Cotton, and V. F. Fusco, “The Road to 6G: Ten Physical Layer Chal-
lenges for Communications Engineers,” IEEE Commun. Mag., vol. 59,
pp. 64-69, Jan. 2021.

E. Bjornson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive
MIMO Systems With Non-Ideal Hardware: Energy Efficiency, Estima-
tion, and Capacity Limits,” IEEE Trans. Inf. Theory, vol. 60, pp. 7112—
7139, Nov. 2014.

C. Mollén, U. Gustavsson, T. Eriksson, and E. G. Larsson, “Out-of-band
Radiation Measure for MIMO Arrays with Beamformed Transmission,”
in IEEE International Conference on Communications, (Kuala Lumpur,
Malaysia), pp. 1-6, IEEE, May 2016.

S. C. Cripps, RF Power Amplifiers for Wireless Communications. Artech
House, second ed., 2006.

B. Sridhar, N. K. Darimireddy, S. Sridhar, and S. Krishna, “Adap-
tive Filter Clipper-Based PAPR Reduction Techniques for Massive
MIMO-OFDM,” in IEEE Wireless Antenna and Microwave Symposium,
(Visakhapatnam, India), pp. 1-5, IEEE, Feb. 2024.

C. Yu, L. Guan, and A. Zhu, “Band-limited Volterra Series-based Behav-
ioral Modeling of RF Power Amplifiers,” in IEEE/MTT-S International
Microwave Symposium Digest, (Montreal, Canada), pp. 1-3, IEEE, Jun.
2012.

D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A Generalized
Memory Polynomial Model for Digital Predistortion of RF Power

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

A=1.0 and - A=2.0.

Amplifiers,” IEEE Trans. Sig. Process., vol. 54, pp. 3852-3860, Oct.
2006.

A. Saleh, “Frequency-Independent and Frequency-Dependent Nonlinear
Models of TWT Amplifiers,” IEEE Trans. Commun., vol. 29, pp. 1715-
1720, Nov. 1981.

R. Rogalin, O. Y. Bursalioglu, H. C. Papadopoulos, G. Caire, and A. F.
Molisch, “Hardware-impairment Compensation for Enabling Distributed
Large-scale MIMO,” in Information Theory and Applications Workshop,
(San Diego, USA), pp. 1-10, IEEE, Feb. 2013.

M. Yao, M. Sohul, R. Nealy, V. Marojevic, and J. Reed, “A Digital Pre-
distortion Scheme Exploiting Degrees-of-Freedom for Massive MIMO
Systems,” 2018.

N. D. Lahbib, M. Cherif, M. Hizem, and R. Bouallegue, “Power
Amplifier Nonlinearities Effects on Massive MIMO Uplink Channel Es-
timation,” in International Conference on Software, Telecommunications
and Computer Networks, (Split, Croatia), pp. 1-6, IEEE, Sep. 2020.
Y. Suzuki, H. Okazaki, T. Asai, and Y. Okumura, ‘“Linearization
Technologies for Power Amplifiers of Cellular Base Stations,” in /EEE
International Symposium on Radio-Frequency Integration Technology,
(Melbourne, Australia), pp. 1-3, IEEE, Aug. 2018.

X. Wang, S. Bi, X. Li, X. Lin, Z. Quan, and Y.-J. A. Zhang, “Capacity
Analysis and Throughput Maximization of NOMA With Non-Linear
Power Amplifier Distortion,” IEEE Trans. Wirel. Commun., vol. 23,
pp. 18331-18345, Dec. 2024.

S. O. Rice, “Mathematical Analysis of Random Noise,” The Bell System
Technical Journal, vol. 23, pp. 282-332, Jul. 1944.

E. Bjornson, J. Hoydis, and L. Sanguinetti, Massive MIMO Networks:
Spectral, Energy, and Hardware Efficiency. Now Foundations and
Trends, 2017.

C. Rapp, “Effects of HPA-nonlinearity on 4-DPSK/OFDM-signal for a
Digital Sound Broadcasting System,” in 2nd European Conference on
Satellite Communication, (Liege, Belgium), pp. 179-184, Oct. 1991.
R. Prasad, OFDM for Wireless Communications Systems. Artech,
first ed., 2004.



