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Abstract— Accurate OSNR estimation is essential for maintain-
ing signal quality in coherent optical communication systems.
This work proposes a deep learning-based method for OSNR
estimation using constellation diagrams as input. A dataset of
over 19,000 images was generated through simulations with
various modulation formats. We evaluated 15 CNN architectures,
including MobileNetV3, ConvNeXt, DenseNet, and EfficientNet.
ConvNeXtBase achieved the best results, with a MAE below
0.43 dB and R2 above 0.98. The results demonstrate the effective-
ness of computer vision models for accurate and non-intrusive
OSNR prediction.
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I. INTRODUCTION

Optical Signal-to-Noise Ratio (OSNR) is a fundamental
parameter that directly influences the performance and re-
liability of modern optical communication systems [1]. As
data traffic continues to grow exponentially due to the pro-
liferation of cloud services, high-definition streaming, and
5G networks, the need for high-capacity and low-latency
optical links has become critical. In such systems, OSNR
serves as a primary indicator of signal quality, especially
in dense wavelength-division multiplexing (DWDM) environ-
ments. Accurate OSNR estimation is essential not only for
link maintenance and fault diagnosis but also for enabling
adaptive modulation schemes that optimize transmission based
on current channel conditions.

Recent advances in deep learning have opened new av-
enues for performance monitoring and signal analysis in
optical communications [2]. Instead of relying solely on tra-
ditional signal processing techniques, deep neural networks
have shown remarkable capabilities in modeling complex
relationships within data, including tasks such as symbol
detection, nonlinearity mitigation, and channel estimation [3]
[4] [5]. These models can learn directly from raw or minimally
processed data and generalize across various transmission
conditions, offering high accuracy and robustness. As a result,
deep learning is becoming a valuable tool for enhancing the
intelligence and autonomy of optical networks.

One promising approach to OSNR estimation involves an-
alyzing constellation diagrams, which visually represent the
modulation state of a received signal [2]. These diagrams

encapsulate key information about signal impairments, such as
phase noise, amplitude distortions, and polarization effects [6].
By treating constellation diagrams as images, it becomes feasi-
ble to apply computer vision techniques to extract meaningful
patterns and predict quality metrics like OSNR. Convolutional
Neural Networks (CNNs), known for their success in image
classification and regression, are particularly well-suited for
this task, enabling accurate and efficient estimation even in
the presence of channel impairments.

In this study, we propose a deep learning-based approach
for OSNR estimation from constellation diagrams generated in
a flexible coherent optical receiver setup. We evaluate a wide
range of CNN architectures using a dataset of over 19,000
images across various modulation formats (DP m-PSK and
DP m-QAM). The models are trained to perform direct OSNR
regression from image inputs. Our best-performing models
achieved mean absolute error (MAE) below 0.43 dB and R2

scores above 0.98 in high-resolution settings, demonstrating
the potential of deep learning and vision-based methods in
advancing intelligent optical network monitoring.

A. Contributions
The main contributions of this study are as follows: (1)

we propose a computer vision-based approach that treats
constellation diagrams as images and employs state-of-the-art
CNNs for direct OSNR estimation, eliminating the need for
traditional signal processing pipelines; (2) a comprehensive
dataset of over 19,000 labeled images was generated using
a back-to-back simulation setup in VPIphotonics, covering
various modulation formats and a wide range of OSNR
values to enhance model robustness and generalization; (3)
we conduct an extensive comparative evaluation of multiple
deep learning architectures, assessing their performance under
different conditions using standard regression metrics; and
(4) our best-performing models, particularly ConvNeXtBase,
achieved OSNR estimation with a mean absolute error below
0.43 dB and R2 scores above 0.98, demonstrating state-of-the-
art performance.

II. RELATED WORKS

Pereira et al. [1] conducted a comprehensive study on au-
tomatic modulation classification for flexible coherent optical
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receivers, aiming to enhance transmission adaptability in next-
generation optical networks. Utilizing a back-to-back simula-
tion setup between a transmitter and a receiver, the authors
generated a substantial dataset comprising 93,600 signals mod-
ulated using dual-polarization DP m-PSK and DP m-QAM
schemes across thirteen distinct OSNR levels. The extracted
signal features—specifically, histograms from in-phase and
quadrature components—were used to train classical machine
learning classifiers, including Random Forest, AdaBoost, and
Decision Trees. Among the evaluated models, Random Forest
achieved accuracy rates exceeding 97%, even when relying
solely on a single polarization component, underscoring the
viability and efficiency of lightweight classification approaches
in optical communication systems.

In [7], Valadão et al. proposed a deep learning-based method
for estimating noise power density using spectrograms derived
from wireless signals. The authors introduced a robust dataset
composed of signals subjected to varying levels of additive
white Gaussian noise (AWGN) under diverse transmission
conditions, including user mobility and channel impairments.
To extract meaningful spectral features, the Hilbert transform
was applied before spectrogram generation. These spectro-
grams served as inputs to several state-of-the-art CNN archi-
tectures for both classification and regression tasks. The results
demonstrated high predictive accuracy, with deep architectures
like ResNet152 achieving over 97%, highlighting the method’s
potential for reliable and efficient noise estimation in dynamic
wireless environments.

In their study, Cho et al. [2] proposed a multitask CNN
capable of simultaneously estimating linear ASE noise, nonlin-
ear interference, and generalized optical signal-to-noise ratio
(GOSNR) in wavelength-division multiplexed (WDM) fiber
communication systems. The method extracts features from I-
Q constellation density matrices obtained from dual-polarized
32-GBaud 16-QAM signals and demonstrates accurate noise
component separation with mean absolute errors below 0.5
dB for OSNRASE , OSNRNL, and GOSNR. Importantly,
their approach does not require high-speed sampling, special-
ized symbols, or additional hardware, making it suitable for
real-time monitoring in deployed metro networks. The study
also validates the model’s robustness across fiber types and
explores the potential for universal training by incorporating
link-specific normalization.

In [8], Wang et al. introduced a deep learning-based in-
telligent constellation diagram analyzer that simultaneously
performs modulation format recognition (MFR) and OSNR
estimation. Leveraging a CNN, their approach operates di-
rectly on raw constellation diagram images, eliminating the
need for manual feature extraction or statistical preprocessing.
The system was trained and tested on six widely-used modu-
lation formats—QPSK, 8PSK, 8QAM, 16QAM, 32QAM, and
64QAM—across a range of OSNR values. The CNN achieved
100% classification accuracy for MFR and maintained OSNR
estimation errors below 0.7 dB in both simulation and ex-
perimental validations. The study also benchmarked the CNN
against traditional machine learning models, such as decision
trees, SVMs, and KNNs, demonstrating superior accuracy and
practical inference speed, highlighting its suitability for real-

time optical performance monitoring.

III. METHODS

This section describes the methodological pipeline adopted
for OSNR estimation, including the system model, data gen-
eration process, image preprocessing steps, the deep learning
architectures evaluated, and the performance metrics used for
model assessment.

A. System model

The proposed system model follows a structured pipeline
for OSNR estimation using constellation diagrams as inputs
to deep learning models. The methodology begins with the
generation of dual-polarization signals modulated with DP m-
PSK and DP m-QAM formats in a back-to-back coherent
optical transmission setup, as described in Subsection III-
B. These signals are processed up to the stage of phase
and quadrature compensation in the digital signal processor
(DSP), after which constellation diagrams are extracted. The
diagrams are saved as RGB images with controlled resolution
and symbol opacity (α), simulating different visualization con-
ditions. These images undergo preprocessing steps including
resizing, normalization, and data augmentation, detailed in
Subsection III-C. The resulting dataset is then used to train
and evaluate a diverse set of CNN architectures, discussed
in Subsection III-D, using regression metrics as presented
in Subsection III-E. This framework enables a fully image-
based, non-intrusive OSNR estimation approach that avoids
conventional signal analysis algorithms and leverages recent
advances in computer vision for performance monitoring in
optical networks.

B. Data generation

The simulation setup illustrated in Figure 1 is based on a
back-to-back configuration using VPIphotonics. It consists of
a parallel-to-serial converter and a modulation mapper at the
transmitter. The mapped signals are converted from digital to
analog and used to modulate a laser carrier at f0 = 192.1 THz,
polarized in the

−→
Ex and

−→
Ey polarization states [1].

In the signal generation process, at the receiver side, the
modulated signals pass through an optical band-pass filter
(OBPF) centered at fc = 192.1 THz, followed by a variable
optical attenuator (VOA) to maintain a constant power of
−2 dBm at the photodetector [1]. After attenuation, the
polarization states are demultiplexed and fed into 2×4 ninety-
degree hybrid couplers, along with the local oscillator signal
centered at fLO = 192.1 THz. The resulting in-phase and
quadrature components are detected by photodetectors, am-
plified by transimpedance amplifiers, and filtered by low-pass
filters (LPFs), before being processed by the DSP [1].

Within the DSP, the signal is converted from analog to
digital, and phase and quadrature delays are compensated in
the IQ compensation block. Chromatic dispersion and timing
offsets are corrected by the dispersion compensation and
time recovery blocks. Polarization-mode dispersion, frequency
offset, and phase noise are subsequently addressed by the



XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

Fig. 1: Block diagram of the coherent optical transmitter and receiver used to generate the signals for training and testing [1].
Serial-to-parallel converter; DAC digital-to-analog converter; Laser diode; DP-MZM: dual-control Mach-Zehnder modulator;
set OSNR: defines the OSNR value in dB/0.1 nm; LO: Local Oscillator; PD: Photodiode; Coherent optical receiver; ADC:
Analog-to-digital converter.

dynamic equalizer, frequency recovery, and phase recovery
blocks, respectively [1].

In this study, full digital signal processing is not required
to obtain the constellation diagrams. After compensating for
phase and quadrature delays, the dual-polarization BPSK,
QPSK, 8PSK, 16QAM, 32QAM, and 64QAM signals are
extracted and used to generate training and testing samples for
the proposed neural network models. The resulting constella-
tion diagrams are saved as images, whose visual clarity and
distinguishability of symbol clusters are influenced by two key
parameters: dots-per-inch (DPI), which defines the resolution
of the image, and the α, which controls the overlap visibility
between symbols. By varying these parameters, it is possible
to simulate different levels of visual noise and representation
granularity, which directly affect the learning behavior of the
models during training and evaluation.

C. Pre processing

The image preprocessing consisted of systematic steps
aimed at standardizing and enriching the dataset. Initially,
the images were loaded from the paths specified in a csv
file and resized to a fixed resolution, ensuring uniform input
dimensions for the neural network. After resizing, the images
were converted into numerical matrices of type uint8 and
normalized to the [0, 1] range by dividing their pixel intensity
values by 255, thus preparing them for compatibility with deep
learning models [9].

To increase the variability of the training set and enhance
the model’s generalization capabilities, a data augmentation
strategy was employed. The applied transformations included
horizontal and vertical flipping, random rotations, random
brightness and contrast adjustments, and a combined ap-
plication of minor translations, scalings, and rotations [9].
These operations were applied exclusively to the training
images, while the test images underwent only resizing and

normalization. This ensured that their original characteristics
were preserved, enabling an unbiased evaluation of the model’s
performance.

D. Proposed deep learning models

We evaluated a diverse set of CNN architectures, Ta-
ble I, ranging from lightweight models optimized for
resource-constrained environments to deeper networks with
enhanced representational capacity. The selected mod-
els—MobileNetV3, ConvNeXt, DenseNet, ResNet, Efficient-
Net, Xception, and InceptionV3—represent a broad spectrum
of design strategies [10][11]. This diversity enabled a thorough
performance comparison in OSNR estimation from constella-
tion diagrams, considering both accuracy and computational
efficiency.

TABLE I: Summary of CNN architectures and their variants.

Model Variants

MobileNetV3 [10][11] Small, Large
ConvNeXt [10][11] Tiny, Small, Base
DenseNet [10][11] 121, 169, 201
ResNet [10][11] 50, 101, 152
EfficientNet [10][11] B0, B3
Xception [10][11] –
InceptionV3 [10][11] –

E. Evaluation Metrics

To assess the regression models, we adopted four standard
metrics: MAE, mean squared error (MSE), root mean squared
error (RMSE), and the coefficient of determination (R2), as
in [5][4]. These metrics offer complementary insights into
prediction quality:
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In the above, yi and ŷi denote the true and predicted values,
ȳ is the mean of the true values, and n is the number of
samples.

IV. EXPERIMENTS AND RESULTS

This section presents the experimental setup, training con-
figuration, dataset characteristics, and quantitative results ob-
tained from evaluating multiple CNN architectures on the
OSNR estimation task using constellation diagram images.

A. Parameters

Table II summarizes the training configuration and model
parameters used in this study. All models were trained using
RGB constellation images resized to 224×224 pixels. A batch
size of 32 and 100 training epochs were adopted, with 15% of
the training data reserved for validation. The dataset was split
into 80% for training and 20% for testing, and shuffling was
applied to ensure randomness. The models were initialized
with ImageNet-pretrained weights and fine-tuned using the
Adam optimizer. MSE was used as the loss function, while the
MAE served as the main evaluation metric. Fine-tuning was
enabled by allowing the base model weights to be trainable. A
global average pooling layer and a linear activation function
were used in the final layers to support the regression objective
of OSNR prediction.

TABLE II: Training configuration and model parameters.

Parameter Value

Input Image Size 224× 224 pixels
Number of Channels 3 (RGB)
Batch Size 32
Number of Epochs 100
Validation Split 15% (from training data)
Train/Test Split 80% train / 20% test
Shuffle True
Random State (Seed) Fixed (for reproducibility)
Initial Learning Rate 1× 10−4

Fine-tuning Learning Rate 1× 10−5

Optimizer Adam
Loss Function MSE
Evaluation Metrics MAE
Pretrained Weights ImageNet
Base Model Trainable Yes (fine-tuning enabled)
Global Pooling Layer GlobalAveragePooling2D
Final Activation Linear
Output Dimension 1 (regression task)

B. Dataset

The dataset used was generated according to the specifica-
tions presented in Table III, totaling 19,050 images. The OSNR
values were incremented with a step of 0.5. Additionally, the
DPI and α levels were varied to increase dataset diversity,
being set to 100 and 1.0, and 150 and 0.2. Figure 2 presents
the constellation diagrams of a QPSK signal under two dis-
tinct OSNR conditions: 12 dB and 20 dB. These diagrams
provide a visual representation of how noise affects signal
quality in optical communication systems. At an OSNR of
12 dB (Figure 2a), the constellation points exhibit significant
dispersion and overlap, which indicates a higher likelihood of
symbol detection errors due to noise interference. In contrast,
the constellation at 20 dB OSNR (Figure 2b) displays well-
separated and tightly clustered points, reflecting a cleaner
signal with improved detection reliability. Both images were
generated at a resolution of 150 DPI to ensure high visual
fidelity for detailed analysis.

TABLE III: Statistical summary by modulation type

Modulation Image Count OSNR Min OSNR Max

64QAM 4452 22.0 33.0
16QAM 3799 17.0 26.0
QPSK 3400 12.0 20.0
BPSK 2999 8.0 15.0
32QAM 2600 15.0 21.0
8PSK 1800 17.0 21.0

(a) QPSK constellation at
12 dB OSNR

(b) QPSK constellation at
20 dB OSNR

Fig. 2: Constellation diagrams for QPSK modulation at differ-
ent OSNR levels.

To improve the generalization ability of the model and
reduce overfitting, a data augmentation pipeline was applied
using the Albumentations library. The following transfor-
mations were composed:

• Horizontal Flip with a probability of 50%;
• Vertical Flip with a probability of 50%;
• Random Rotation within a range of ±30 degrees, applied

with 50% probability;
• Random Brightness and Contrast Adjustment with 50%

probability;
• Shift, Scale, and Rotate: includes random shifting (up

to 5% of the image), scaling (up to 10%), and rotation
(within ±15 degrees), each applied with 50% probability.

This augmentation strategy increases the variability of the
training set and simulates different real-world conditions, thus
helping the model to learn more robust and invariant features.
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C. OSNR estimation

Tables IV and V present the final test results of all eval-
uated models under two different visualization settings for
constellation diagrams: DPI = 100 with α = 1.0, and DPI
= 150 with α = 0.2. The models were assessed using four
regression metrics: RMSE, MAE, MSE, and R2. In both
scenarios, the ConvNeXtBase model achieved the best overall
performance, with a minimum MAE of 0.4241 and an R2

of 0.9900 when using higher resolution and lower opacity
(DPI = 150, α = 0.2). Other high-performing models include
ConvNeXtSmall and ResNet152, which also presented MAE
values well below 0.6 in the enhanced setting.

Compared to related studies in the literature, which reported
MAE values of approximately 0.5 [2] and 0.7 [8] for OSNR
estimation using deep learning techniques, our results demon-
strate a clear improvement in this metric. These gains can be
attributed to the use of high-resolution constellation images,
extensive data augmentation, and the evaluation of recent
convolutional architectures specifically designed for visual
pattern recognition. The low MAE values and high R2 scores
achieved confirm the effectiveness of the proposed image-
based approach for OSNR estimation in coherent optical
systems.

TABLE IV: Final test results for each model using RMSE,
MAE, MSE, and R2 metrics (DPI = 100 and α = 1).

Model RMSE MAE MSE R2

MobileNetV3Small 2.6867 1.9759 7.2183 0.7893
MobileNetV3Large 1.8833 1.3889 3.5467 0.8465
ConvNeXtTiny 1.3413 1.0056 1.7991 0.9475
ConvNeXtSmall 1.4429 1.0824 2.0821 0.9392
ConvNeXtBase 1.0073 0.7260 1.0146 0.9698
DenseNet121 1.1965 0.8514 1.4317 0.9573
DenseNet169 1.3416 0.9723 1.7998 0.9464
DenseNet201 1.1847 0.8448 1.4036 0.9582
ResNet50 1.5255 1.0931 2.3270 0.9307
ResNet101 1.4209 1.0141 2.0189 0.9412
ResNet152 1.2849 0.9035 1.6510 0.9519
EfficientNetB0 1.9216 1.3805 3.6924 0.8924
EfficientNetB3 1.6092 1.2015 2.5894 0.9245
InceptionV3 1.8921 1.3888 3.5799 0.8957
Xception 2.1604 1.5914 4.6673 0.8640

TABLE V: Final test results for each model using RMSE,
MAE, MSE, and R2 metrics (DPI = 150 and α = 0.2).

Model RMSE MAE MSE R2

MobileNetV3Small 2.4648 1.8346 6.0754 0.8292
MobileNetV3Large 6.176 4.8008 38.1512 -0.0549
ConvNeXtTiny 0.8381 0.5970 0.7024 0.9805
ConvNeXtSmall 0.7869 0.5488 0.6192 0.9828
ConvNeXtBase 0.6007 0.4241 0.3608 0.9900
DenseNet121 0.9412 0.6715 0.8859 0.9755
DenseNet169 0.8425 0.6088 0.7099 0.9803
DenseNet201 0.8925 0.6374 0.7966 0.9779
ResNet50 0.9637 0.6962 0.9287 0.9743
ResNet101 0.7314 0.5059 0.5349 0.9850
ResNet152 0.6487 0.4450 0.4208 0.9882
EfficientNetB0 1.5831 1.2731 2.5062 0.9295
EfficientNetB3 1.0524 0.7738 1.1077 0.9689
InceptionV3 0.9616 0.6854 0.9246 0.9740
Xception 1.3035 0.9400 1.6991 0.9522

V. CONCLUSIONS

This study presented a deep learning-based approach for
estimating OSNR directly from constellation diagrams gen-
erated in flexible coherent optical receivers. By leveraging
a diverse dataset encompassing various DP m-PSK and DP
m-QAM modulation formats and evaluating multiple state-
of-the-art convolutional neural networks, we demonstrated
that models such as ConvNeXtBase can accurately predict
OSNR with a MAE below 0.43 dB and R2 scores exceeding
0.98. The results confirm the potential of computer vision
techniques for performance monitoring in optical networks,
offering a simplified and efficient alternative to traditional
OSNR estimation methods. As future work, we intend to fur-
ther enhance model robustness by expanding the dataset with
greater variability in parameters such as linewidth, symbol
rate, DPI, α, and polarization effects. Additionally, we plan
to explore transformer-based architectures, including Vision
Transformers (ViT), which may offer improved generalization
capabilities in complex scenarios due to their global attention
mechanisms.
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