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The Log-µ Process
Godfred Kumi Tenkorang and Michel Daoud Yacoub

Abstract— This paper builds upon the idea of a medium
nonlinearity to introduce a general application three-parameter
statistical model - the Log-µ model, that presents simple ana-
lytical formulations. Its probability density function (PDF) and
cumulative distribution function (CDF) appear in closed forms
with support in R but limited in the left. Interestingly, for some
particular combination of the parameters, a bimodality shows.
Knowing that a physical model is behind the proposal and rec-
ognizing its potential for wireless communications applications,
we specialize it so that its support now is R+. In addition, the
paper demonstrates an application of the Log-µ fading model
by analyzing the performance of the pure-selection combining
diversity technique.

Keywords— Channel’s Nonlinearity; Fading Model; Pure-
Selection Combining Diversity.

I. INTRODUCTION

Statistical modeling plays a pivotal role in numerous sci-
entific and engineering disciplines, enabling researchers and
designers to capture, analyze, and predict the behavior of
complex systems under uncertainty. Statistical models are
widely employed to represent real-world phenomena, support
decision making, and optimize system performance. In the
field of wireless communications, statistical models are par-
ticularly essential for characterizing the behavior of the radio
propagation channel, a component that exhibits highly variable
and often unpredictable dynamics due to environmental and
mobility-related factors.

Wireless communication is one of the fastest growing fields
in the communications industry, driven by the continuous
demand for higher data rates, lower latency, and greater
connectivity. Key advancements shaping this evolution include
fifth (5G) and sixth (6G) generation cellular communication
systems [1], and the IEEE 802.11ax standard (Wi-Fi 6) [2],
all of which significantly enhance network capacity, efficiency,
and overall performance.

The received signal in a wireless system is significantly
affected by channel impairments, namely shadowing and
multipath. These phenomena can cause severe signal fading,
which, in extreme cases, may render communication imprac-
tical. Consequently, accurate models that describe these radio
channel effects are essential for developing reliable systems.

Numerous channel models have been studied in the litera-
ture to describe long-term and short-term fading, among worth
mentioning Lognormal [3], [4], Rayleigh [5], Hoyt [6], Rice
[7], Nakagami-m [8], Weibull [9], α-µ [10], κ-µ [11], η-µ
[11], and α-η-κ-µ [12]. Certainly, the greater the number of
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fading parameters, the more flexible and adaptable the fading
model can be to real-world propagation scenarios. However,
this comes at the cost of greater mathematical complexity,
which may limit its practical applicability.

As wireless communication shifts toward higher frequen-
cies, including the mmWave and THz bands, the nonlinear
effects of the propagation medium may become more pro-
nounced [13]. The concept of nonlinearity was first hinted at
in the α-µ model, where this is manifested through a power
parameter affecting the modulus of fading components. This
formulation has proven highly effective, offering a balance
between flexibility and mathematical simplicity. As a result,
the α-µ model has gained widespread popularity, with numer-
ous studies demonstrating its ability to fit field measurements
across various frequency bands, including mmWave and THz
[14], [15], [16], [17], [18], [19], [20].

Recently, the authors of [21] explored the suitability of
the α-µ model in composite fading scenarios. Their study
compared its statistical fitting performance against well-known
composite models, Nakagami-Lognormal, Generalized-K, and
Fisher-Snedecor, using field measurements at 1.8 GHz in a
composite fading environment. Their findings revealed that the
α-µ model either outperformed these established models or
provided comparable accuracy.

Motivated by this and inspired by the importance of the
logarithmic presence in several statistical scenarios, we intro-
duce the Log-µ process. This is a general application three-
parameter statistical model that presents simple analytical
formulations. Its PDF and CDF appear in closed forms with
support in R but limited in the left. Interestingly, for some
particular combination of the parameters, a bimodality shows.
Knowing that a physical model is behind the proposal and
recognizing its potential for wireless communications applica-
tions, we specialize it so that its support now is R+.

The remainder of this article is structured as follows. Section
II introduces the Log-µ process depicting its main statistical
formulations and specializing it to accommodate a fading
vision. Section III presents some plots to illustrate its behavior
under different parameter configurations. Section IV, explores
practical applications of the Log-µ fading model, focusing on
evaluating the performance of the pure-selection combining
diversity technique. Finally, Section V concludes the paper
and outlines potential future research.

II. THE LOG-µ PROCESS

The usefulness of the concept of medium nonlinearity has
been recognized in several practical applications, as mentioned
previously. The importance of the logarithmic presence in
several statistical scenarios is well known. Hence, motivated
by this, we propose the Log-µ Process, which leads to simple
mathematical tractability.
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A. Preliminaries

Let g(P ) be a nonlinear function of Z, which is a unity-
power Gamma random variable, with shape parameter µ, and
PDF given as

fZ(z) =
µµzµ−1

Γ(µ) exp(µz)
(1)

where Γ(u) =
∫∞
0

xu−1exp(−x)dx is the Gamma function.
For any monotonic g(P ), the PDF, fP (ρ), of the normalized

envelope, P = R/r̂, is found as fP (ρ) = |g′(ρ)|fZ(g(ρ)), in
which 1/g′(ρ) = dρ/dz.

B. Log-µ Model

Defining

g(P ) = log(Pα + s) (2)

where α > 0, and s ∈ R are arbitrary parameters, the PDF,
fP (ρ), is found as

fP (ρ) =
αρα−1µµ log(ρα + s)µ−1

Γ(µ)(ρα + s)µ+1
, (3)

where ρα + s > 1 and µ > 0. The parameter s plays a dual
role, thus acting as both a shaping and a shifting parameter. It
is important to note that α is unrestricted for s ≤ 1; however,
for s > 1, α must be restricted to odd integers to ensure real-
valued expressions. The shape parameter, µ, is given by

µ = V −1(log(ρα + s)), (4)

where V(.) denotes the variance operator.
The CDF of the normalized envelope, FP (ρ), is found in a

closed-form as

FP (ρ) = 1− Γ(µ, µ log(ρα + s))

Γ(µ)
, (5)

where Γ(u, v) =
∫ v

0
xu−1 exp(−x)dx is the incomplete

Gamma function.

C. Log-µ Fading Model

In linear units, the envelope or power of a fading signal is a
positive entity. To enforce a non-negative domain suitable for
modeling fading, we define a random variable, Y , as

y = ρ− (1− s)1/α > 0. (6)

Using the fP (ρ) obtained in (3), and following the normal
procedure for transformation of random variable, the PDF,
fY (y), is derived as

fY (y) =
α(y + (1− s)1/α)α−1µµ

Γ(µ)((y + (1− s)1/α)α + s)µ+1

× log((y + (1− s)1/α)α + s)µ−1.

(7)

Consequently, the PDF of the normalized envelope, fP (ρ),
for the Log-µ fading model is expressed exactly as

fP (ρ) =
α(ρ+ (1− s)1/α)α−1µµ

Γ(µ)((ρ+ (1− s)1/α)α + s)µ+1

× log((ρ+ (1− s)1/α)α + s)µ−1,

(8)

where ρ > 0.
The CDF of the normalized envelope, FP (ρ), is found in a

closed-form as

FP (ρ) = 1−
Γ
(
µ, µ log

((
ρ+ (1− s)1/α

)α
+ s

))
Γ(µ)

. (9)

III. SOME SAMPLE PLOTS

This section presents illustrative plots of the Log-µ pro-
cess under different parameter configurations, showcasing its
flexibility in capturing a variety of behaviors through its
PDFs and CDFs. One of the most distinctive features of the
Log-µ process is its ability to exhibit bimodal characteristics
for certain parameter configurations, particularly when the
parameter s > 1. The bimodality phenomenon has been
observed in the mmWave and Terahertz (THz) communication
channels, where the fading signal PDF can exhibit such traits,
as noted in the literature [22], [23], [24], [25]. Therefore,
developing distributions with such characteristics is crucial for
modeling and designing communication systems, particularly
in emerging high-frequency bands where fading behaviors
often deviate from conventional models.

A. Log-µ Model

Figs. 1 and 2, respectively, show the PDF and CDF of the
Log-µ model for α = 1, and three values of s: 3, 1, and −2,
under varying values of µ. These plots reflect the generality
of the Log-µ model beyond standard fading distributions.
Similarly, Figs. 3 and 4, respectively, show the PDF and CDF
for α = 3, with s set to 5 and 2, and varying µ. In these
cases, the emergence of bimodal behavior becomes evident.
Figs. 5 and 6, respectively, depict the effect of varying α while
keeping µ = 4 and s = 3 constant.

μ = 0.5

μ = 1.0

μ = 2.0

μ = 3.0

μ = 4.0

μ = 6.0

s = -2s = 1s = 3

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
0.0

0.25

0.5

0.75

1.0

1.25

ρ

f P
(ρ
)

Fig. 1. Various shapes of the PDF of the Log-µ model for α = 1 and
different s values.
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Fig. 2. Various shapes of the CDF of the Log-µ model for α = 1 and s =
3.
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Fig. 3. Various shapes of the PDF of the Log-µ model for α = 3 and
different s values.

B. Log-µ Fading Model

Figs. 7 and 8, respectively, show the PDF and CDF of
the Log-µ fading model for α = 2, s = 0.5, with varying
µ. As observed, the fading envelope remains strictly positive
regardless of s, which in this case acts solely as a shaping
parameter. Finally, Figs. 9 and 10 illustrate, respectively, the
PDF and CDF of the Log-µ fading model for α = 3 and
s = 2, considering different values of µ. These results further
confirm the model’s ability to capture bimodal behavior.

IV. SOME APPLICATION OF THE LOG-µ FADING MODEL

Several techniques have been proposed in the literature to
mitigate the effects of fading on transmitted signals. Among
these are diversity, adaptive equalization, and coding. In recep-
tion systems, diversity combining methods can significantly
enhance signal quality. This section presents a performance
analysis of the pure-selection combining technique.

A. Pure-Selection Combining

In the pure-selection combining technique, the received
signals are continuously monitored to select the branch with
the highest signal-to-noise ratio (SNR). Consequently, at the
receiver, the combiner output envelope R is given by
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Fig. 4. Various shapes of the CDF of the Log-µ model for α = 3 and
different s values.
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Fig. 5. Various shapes of the PDF of the Log-µ model for µ = 4 and s =
3.

R = max
i=1,...,M

{Ri}. (10)

Considering the SNR in each branch i defined as γi = ri
2,

the probability that γi, is less than or equal to a given SNR,
Γ, is derived as

F (Γ) = 1−

Γ

(
µ, µ log

(((
Γ
γ0
E(P 2)

)1/2

+ (1− s)1/α
)α

+ s

))
Γ(µ)

,

(11)
where γ0 = E(R2) = r̂2E(P 2) is the mean power.

Assuming that the selector is ideal and that the best signal
is always present at the output, the probability that the SNRs
in all of the M branches are simultaneously less than or equal
to a given SNR, Γs, is given by the CDF of the output SNR,
denoted FSEL(Γs). Under the assumption of independent and
identically distributed (i.i.d.) Log-µ fading across all branches,
the CDF is given by
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α = 1, 3, 5, 7, 9 ( increasing)
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Fig. 6. Various shapes of the CDF of the Log-µ model for µ = 4 and s =
3.
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Fig. 7. Various shapes of the PDF of the Log-µ fading model for α = 2
and s = 0.5.

FSEL(Γs) = (1−

Γ

(
µ, µ log

(((
Γs

γ0
E(P 2)

)1/2

+ (1− s)1/α
)α

+ s

))
Γ(µ)


M

.

(12)

B. Sample Shapes of Distribution of the SNR at the Output of
the Pure-Selection Combiner

In this section, we present some outage probability plots,
FSEL(Γs), for fixed parameters α and µ, while varying M .
As shown in Fig. 11, the diversity technique enhances system
performance, specifically, increasing the number of branches
improves the SNR. However, while adding more diversity
branches always improves SNR, the incremental benefit di-
minishes as the number of branches increases.

Analyzing Fig. 11 for α = 1 and µ = 4, it is observed that
a 99% reliability level, 1-FSEL(Γs), is achieved at an SNR
of −23 dB for M = 1 (no diversity), −16 dB for M = 2,
−12 dB for M = 3, and −10 dB for M = 4. The SNR gains
when increasing from M = 1 to M = 2, M = 2 to M = 3,
M = 3 to M = 4 are approximately 30%, 25%, and 17%,

μ = 0.2, 0.5, 1, 2, 3, 4 ( increasing)
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Fig. 8. Various shapes of the CDF of the Log-µ fading model for α = 2
and s = 0.5.
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Fig. 9. Various shapes of the PDF of the Log-µ fading model for α = 3
and s = 2.

respectively. These results highlight that, while increasing the
number of diversity branches consistently enhances SNR, the
relative improvement decreases as M increases.

V. CONCLUSIONS

In this paper, we introduce the Log-µ process, a novel
framework for capturing the nonlinear effects of the propa-
gation medium in which multipath clustering may be present.
The Log-µ fading model stems from the idea of the nonlinear-
ity of the propagation environment and the importance of the
logarithmic presence in several statistical scenarios. Notably,
the PDF and CDF of the Log-µ model lead to a mathe-
matically simple formulation while maintaining a complexity
level comparable to other general distributions. Due to the
alternative treatment of nonlinearity, the Log-µ fading model
is conjectured to provide improved adaptability for certain
wireless communication applications than the existing models
in the literature. This conjecture arises from the fact that a
popular nonlinear fading model alone, namely α-µ, was able
to yield very good fitting to practical data for a composite
(short-term and long-term) fading environment.

As future work, further investigation into the nonlinearity of
the propagation medium could be conducted potentially lead-
ing to analytically tractable formulations. Given the physical
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μ = 0.2, 0.5, 1, 2, 3, 4 ( increasing)
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Fig. 10. Various shapes of the CDF of the Log-µ fading model for α = 3
and s = 2.

M = 1, 2, 3, 4, 6, 8, 10 ( increasing)

-40 -30 -20 -10 0 10 20

100

10-2

10-4

10-6

10-8

10-10

10 log(Γs / γ0)

F
S
E
L
(Γ
s)

Fig. 11. Distribution of the SNR at the output of the pure-selection combiner
for α = 1, µ = 4 and s = 1.

basis of the proposed model, an extension to include higher-
order statistical measures, such as the level crossing rate (LCR)
and average fading duration (AFD), would be a valuable
contribution. While this paper focuses on the pure-selection
combining diversity technique, exploring additional techniques
such as threshold-selection, maximal ratio, and equal gain
combining could provide deeper insights into the model’s
performance. Finally, an experimental validation through field
measurements, comparing the Log-µ model against well-
established fading models, would further substantiate its prac-
tical relevance.

REFERENCES

[1] A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, “5G evolution: A
view on 5G cellular technology beyond 3GPP release 15,” IEEE Access,
vol. 7, pp. 127 639–127 651, 2019.

[2] S. G. Sankaran and S. R. Gulasekaran, Wi-Fi 6: Protocol and Network.
Artech House, 2021.

[3] S. Haykin., Communication Systems, 4th ed. New York, USA: John
Wiley Sons, 2001.

[4] M. D. Yacoub, Foundations of Mobile Radio Engineering, 1st ed. Boca
Raton, FL, USA: CRC Press, Inc., 1993.

[5] L. Rayleigh, “On the resultant of a large number of vibrations of the
same pitch and of arbitrary phase,” Philos. Mag., vol. 10, no. 60, pp.
73–78, 1880.

[6] R. S. Hoyt, “Probability functions for the modulus and angle of the
normal complex variate,” Bell System Tech. J., vol. 26, no. 2, pp. 318–
359, Apr 1947.

[7] S. O. Rice, Statistical Properties of Random Noise Currents. NY, USA:
Dover: N. Wax, Ed., 1954.

[8] M. Nakagami, “The m-distribution-A general formula of intensity distri-
bution of rapid fading,” Statistical Methods in Radio Wave Propagation,
vol. 26, no. 2, pp. 3–36, Apr 1960.

[9] W. Weibull, “A statistical distribution function of wide applicability,” J.
Appl. Mech., vol. 18, pp. 293–297, Sep 1951.

[10] M. D. Yacoub, “The α-µ distribution: A physical fading model for the
Stacy distribution,” IEEE Transactions on Vehicular Technology, vol. 56,
no. 1, pp. 27–34, jan 2007.

[11] ——, “The κ-µ distribution and the η-µ distribution,” IEEE Antennas
and Propagation Magazine, vol. 49, no. 1, pp. 68–81, feb 2007.

[12] ——, “The α-η-κ-µ fading model,” IEEE Transactions on Antennas
and Propagation, vol. 64, no. 8, pp. 3597–3610, aug 2016.

[13] ——, “The α-η-κ-µ fading model,” IEEE Transactions on Antennas
and Propagation, vol. 64, no. 8, pp. 3597–3610, 2016.

[14] N. P. Le and M.-S. Alouini, “Performance analysis of ris-aided thz wire-
less systems over α-µ fading: An approximate closed-form approach,”
IEEE Internet of Things Journal, vol. 11, no. 1, pp. 1328–1343, 2024.

[15] T. R. R. Marins, A. A. dos Anjos, V. M. R. Peñarrocha, L. Rubio,
J. Reig, R. A. A. de Souza, and M. D. Yacoub, “Fading evaluation in
the mm-wave band,” IEEE Transactions on Communications, vol. 67,
no. 12, pp. 8725–8738, 2019.

[16] E. N. Papasotiriou, A.-A. A. Boulogeorgos, M. Francis De Guzman,
K. Haneda, and A. Alexiou, “A new look to thz wireless links:
Fading modeling and capacity assessment,” in 2021 IEEE 32nd An-
nual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), 2021, pp. 1–5.

[17] J. Reig and L. Rubio, “Estimation of the composite fast fading and shad-
owing distribution using the log-moments in wireless communications,”
IEEE Trans. Wireless Commun., vol. 12, no. 8, pp. 3672–3681, 2013.

[18] H. N. Mahjoub, A. Tahmasbi-Sarvestani, S. M. O. Gani, and Y. P. Fallah,
“Composite α-µ based DSRC channel model using large data set of
RSSI measurements,” IEEE Trans. Intell. Transp. Syst., vol. 20, pp. 205–
217, 2019.

[19] O. S. Badarneh, M. T. Dabiri, and M. Hasna, “Channel modeling and
performance analysis of directional THz links under pointing errors and
α-µ distribution,” IEEE Commun. Lett., vol. 27, no. 3, pp. 812–816,
2023.

[20] O. S. Badarneh, F. E. Bouanani, and F. Almehmadi, “A general
framework for UAV-aided THz communications subject to generalized
geometric loss,” IEEE Trans. Veh. Technol., vol. 72, no. 11, pp. 14 589–
14 600, 2023.

[21] A. A. d. Anjos, G. K. Tenkorang, F. C. Martins, E. J. Leonardo, and
M. D. Yacoub, “Suitability of α-µ for composite fading modeling,” IEEE
Transactions on Antennas and Propagation, vol. 72, no. 4, pp. 3670–
3679, 2024.

[22] S. L. Cotton, “A statistical model for shadowed body-centric com-
munications channels: Theory and validation,” IEEE Transactions on
Antennas and Propagation, vol. 62, no. 3, pp. 1416–1424, Mar. 2014.

[23] ——, “Human body shadowing in cellular device-to-device communi-
cations: Channel modeling using the shadowed κ − µ fading model,”
IEEE J. Sel. Areas Commun., vol. 33, no. 1, pp. 111–119, Jan. 2015.

[24] O. Renaudin, V.-M. Kolmonen, P. Vainikainen, and C. Oestges, “Wide-
band measurement-based modeling of inter-vehicle channels in the 5-ghz
band,” IEEE Trans. Veh. Technol., vol. 62, no. 8, pp. 3531–3540, Oct.
2013.

[25] S. K. Yoo, N. Simmons, S. L. Cotton, P. C. Sofotasios, M. Matthaiou,
M. Valkama, and G. K. Karagiannidis, “The κ-µ/inverse gamma and η-
µ/inverse gamma composite fading models: Fundamental statistics and
empirical validation,” IEEE Trans. Commun., vol. 69, no. 8, pp. 5514–
5530, 2017.


