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Abstract— This paper addresses three critical limitations in
previous analyses of RIS-aided wireless systems: propagation
environments with fixed diversity gain, restricted spatial correla-
tion profiles, and approximation methods that fail to capture the
system behavior in the high signal-to-noise ratio (SNR) regime. To
overcome these challenges, we conduct an exact asymptotic anal-
ysis focused on the left tail of the SNR distribution, which plays
a critical role in high-SNR system performance. Additionally, to
account for general correlation profiles and fading environments
with variable diversity and coding gains, we consider arbitrarily
correlated Nakagami-m fading channels. The analytical results
show that fading correlation induces a horizontal shift in the
asymptotic behavior—represented as a straight line in the log-
dB scale—of the PDF and CDF, displacing these curves to
the left. The asymptotic linear coefficient quantifies this shift,
while the angular coefficient remains unaffected. Moreover, the
results reveal that the high sensitivity of the linear coefficient
to correlation arises from the aggregated contribution of all
marginal asymptotic terms, effectively capturing each channel’s
correlation characteristics.

Keywords— Reconfigurable intelligent surfaces, Nakagami-m
fading, correlated channels, asymptotic analysis.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RIS) offer a transforma-
tive paradigm to wireless communications by enhancing signal
quality and network performance [1]. However, RIS-assisted
wireless networks still face key challenges, particularly in
channel estimation, beamforming, sum-rate optimization, and
channel modeling. In this work, we focus on the latter: channel
modeling. Specifically, we aim to derive the chief statistics of
the system’s signal-to-noise ratio (SNR), namely the probabil-
ity density function (PDF) and cumulative distribution function
(CDF). These metrics are essential for evaluating system
performance and guiding the design of RIS-enabled networks.

Several studies have investigated RIS channel modeling and
derived the PDF and CDF of the SNR under the assumptions
of independent and identically distributed (i.i.d.) or inde-
pendent non-identically distributed (i.n.i.d.) fading channels
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(cf. [2]–[9] and references therein). However, in practical
deployments, mutual correlation among RIS elements—arising
from their close physical spacing—significantly affects signal
reception [10], [11]. Therefore, accurate performance evalua-
tion requires incorporating spatial correlation into the channel
modeling process.

While independent fading scenarios have been extensively
studied, only a few works have focused on channel modeling
for RIS-aided systems under correlated fading conditions.
Notable contributions include those in [10]–[14]. In [10],
spatial correlation due to the close proximity of RIS elements
was modeled under Rayleigh fading, and the SNR statistics
(PDF and CDF) were approximated in the large-RIS regime
(i.e., a large number of RIS elements) using the Central Limit
Theorem (CLT). In [13], arbitrarily correlated Rayleigh fading
was considered, and the SNR statistics were approximated
in the large-RIS regime using deterministic equivalent (DE)
analysis. In [11], an exponentially decaying Nakagami-m
correlation was considered, while the SNR statistics were ap-
proximated by a Gamma distribution using moment-matching
(MM) technique. Nonetheless, both the MM technique and
the CLT often fail to accurately capture the tail behavior of
the distribution. In [14], arbitrary spatial Rayleigh correlation
was considered, and the SNR statistics were approximated
using a Gamma distribution via the MM technique. More
recently, [12] presented an exact and asymptotic analysis of
SNR statistics under equally correlated Rician fading. The
asymptotic expressions were derived using residue calculus,
while the exact formulations were expressed in terms of nested
series involving generalized multivariate Fox’s H-functions.
Although thorough, the multivariate Fox’s H-function ap-
proach entails significant computational complexity as the
number of RIS elements increases [15].

Despite considerable efforts, several limitations remain in
the analysis of RIS-assisted networks over correlated fading
channels: (i) propagation environments restricted to fixed
diversity gain (e.g., Rician fading [12]); (ii) simplified cor-
relation profiles (e.g., equally and exponentially decaying
[11], [12]); and (iii) approximation methods that inadequately
describe the tail behavior of the SNR distribution (e.g., MM
and CLT approaches [10], [11], [14]). In this paper, we address
these limitations through an exact asymptotic analysis focused
on the left tail of the distribution—a region critical for charac-
terizing system behavior in the high-SNR regime. Moreover,
to extend the analysis to unrestricted correlation structures
and propagation environments with variable coding gain, we
consider arbitrarily correlated Nakagami-m fading channels.

In the sequel, the operator E(·) denotes expectation; V(·),
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variance; [·]T indicates a transposed vector; (·)∗, complex con-
jugate; RN

+ , the set of all N -dimensional real vectors with non-
negative components; C, the set of complex numbers; ℜ{·}
and ℑ{·} denote the real and imaginary parts, respectively, of
a complex number; i =

√
−1 is the imaginary unit; diag (·),

returns the diagonal elements of a square matrix; Iν (·), the
modified Bessel function of the first kind of νth order; Kν(·),
the modified Bessel function of the second kind of νth order;
Γ(·), the gamma function; 2F̃1(·, ·, ·, ·), the regularized hyper-
geometric function; ◦ and ⊘, the Hadamard (element-wise)
product and division, respectively; Π(A), the product of all
elements of the vector A; argmaxa∈A ga returns the argument
a at which ga attains its maximum; and ∼, “asymptotically
equal to around zero, ” i.e., h(x) ∼ g(x) ⇐⇒ lim

x→0

h(x)
g(x) = 1.

II. SYSTEM AND CHANNEL MODELING

In this section, we briefly review the definition and con-
struction of correlated Nakagami-m random variables (RVs).
Then, we introduce the adopted RIS-assisted wireless system.

A. Correlated Nakagami-m Random Variables

The correlation among Nakagami-m RVs is induced by their
underlying Gaussian components. Let {Gn,l}N,m

n=1,l=1 denote a
set of complex Gaussian RVs constructed as in [16, eq. (7)]:

Gn,l = σn

(√
1− λ2

nXn,l + λnX0,l

)
+ iσn

(√
1− λ2

nYn,l + λnY0,l

)
, (1)

where X0,l, Y0,l, Xn,l, and Yn,l (n = 1, . . . , N and l =
1, . . . ,m) are independent Gaussian RVs with zero mean and
variance 1/2. Then, for any n, k ∈ {1, . . . , N}, and l, j ∈
{1, . . . ,m}, we have E(Xn,lYk,j) = 0, and E(Xn,lXk,j) =
E(Yn,lYk,j) = 1

2ϱn,kϱl,j , where ϱa,b is the Kronecker delta
function [17, eq. (04.20.02.0001.01)]. The cross-correlation
coefficient between any pair of complex Gaussian RVs Gn,l

and Gk,j , ∀n ̸= k, is given by [16, eq. (8)]

ρ̄(n,l),(k,j) =
E(Gn,lG

∗
k,j)− E(Gn,l)E(G∗

k,j)√
E(|Gn,l|2)E(|Gk,j |2)

=


1, n = k and l = j

λnλk, n ̸= k and l = j

0, l ̸= j.

(2)

Moreover, λn ∈ [−1, 1]\ {0} is a correlation parameter that
governs the statistical dependence between any Gn,l and Gk,j ,
and σ2

n = E(ℜ{Gn,l}2) = E(ℑ{Gn,l}2). Each resulting RV

Hn =
√∑m

l=1 |Gn,l|2 follows a Nakagami-m distribution
with shape parameter m and mean square value E(H2

n) =
mσ2

n. The cross-correlation coefficient between any pair of
Nakagami-m RVs Hn and Hk is given by [16, eq. (10)]

ρn,k =
E(HnH

∗
k )− E(Hn)E(H∗

k )√
V(Hn)V(Hk)

= λ2
nλ

2
k. (3)

Let H ≜ [H1, H2, ...,HN ]T denote a random vector con-
sisting of correlated Nakagami-m RVs. The joint PDF of H

is given by [16, eq. (20)]

fH(h) =

∫ ∞

0

tm−1

Γ(m)
exp(−t)

N∏
n=1

1

(σ2
nλ2

nt)
m−1

2

hm
n

δ2n

× exp

(
−h2

n + σ2
nλ

2
nt

2 δ2n

)
Im−1

(
hn

√
σ2
nλ2

nt

δ2n

)
dt, (4)

where h = [h1, h2, . . . , hN ]T , δ2n = σ2
n

(
1−λ2

n

2

)
, and m ≥ 0.5

denotes (as before) the fading shape parameter.

B. RIS-aided Wireless Communications
Consider a wireless network in which a RIS comprising N

elements assists communication between a single-antenna user
transmitter (UT) and a user receiver (UR). The UT–RIS and
RIS–UR channels experience correlated Nakagami-m fading,
while the direct UT–UR link is obstructed by large obstacles.

Let H̃1 ≜ [H̃1,1, . . . , H̃1,N ]T ∈ CN×1 and H̃2 ≜
[H̃2,1, . . . , H̃2,N ]T ∈ CN×1 denote the complex random
vectors containing the channel coefficients between the UT and
the n-th RIS element, and between the n-th RIS element and
the UR, respectively. Each channel coefficient is expressed as
H̃v,n = Hv,ne

iϕv,n (v ∈ 1, 2), where Hv,n and ϕv,n denote the
envelope and phase components, respectively. Moreover, de-
fine H1 ≜ [H1,n, . . . ,H1,N ]T and H2 ≜ [H2,n, . . . ,H2,N ]T .
In this paper, we assume that H1 and H2 are mutually
independent random vectors, each consisting of N correlated
Nakagami-m RVS with joint PDF given by (4). Additionally,
we consider that the received signal at the UR is influenced
by the RIS reflection matrix, which controls the phase shifts
applied to the incident signal. The reflection matrix is defined
as Θ = diag

(
eiθ1 , . . . , eiθN

)
, where θn ∈ [0, 2π] denotes the

phase shift introduced by the n-th RIS element. Lastly, we
consider that the RIS applies optimal phase shifts to maximize
the SNR. Under these considerations, the instantaneous SNR
at the UR is expressed as

γ = γ̄

∣∣∣∣∣
N∑

n=1

H1,nH2,n

∣∣∣∣∣
2

, (5)

where γ̄ represents the average SNR per symbol.
Eq. (5) provides the basis for performance analysis of the

RIS-assisted system under arbitrarily correlated Nakagami-m
fading. However, it is worth noting that deriving the statistical
characterization of the SNR statistics (PDF and CDF) is a
highly challenging task. To date, no tractable expressions have
been obtained for the PDF or CDF of (5). To address this
analytical challenge, we adopt an asymptotic approach focused
on the left tail of the PDF of γ, near the origin. As shown next,
the asymptotic analysis yields simplified expressions for the
SNR statistics, enabling efficient performance evaluation and
design insights at high SNR.

III. ASYMPTOTIC SNR ANALYSIS

In this section, we perform an asymptotic analysis aiming
at deriving asymptotic expressions for the PDF and CDF of γ.

Let the sum in (5) be denoted as

S ≜
N∑

n=1

H1,nH2,n. (6)
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Moreover, let the PDF of S be expressed via its Maclaurin
series expansion as fS(s) =

∑∞
n=0 ans

bn , where an and bn
are the expansion coefficients. According to [18, eq. (3)], the
PDF of S admits the asymptotic representation

fS(s) ∼ a0s
b0 , (7)

where a0 and b0 are the asymptotic linear and angular co-
efficients (in a log-scale visualization) of the PDF of S,
respectively.1 The asymptotic representation of the PDF of
γ can be readily derived from (7) via a standard change of
variables, γ = γ̄|S|2, yielding

fγ(γ) ∼ aγ,0γ
bγ,0 , (8)

where aγ,0 = a0/
(
2 γ̄

b0+1
2

)
and bγ,0 = (b0 − 1)/2 denote

the linear and angular coefficients the PDF of γ, respectively.
The CDF of γ can be obtained by integrating (8) from zero
to γ, i.e.,

∫ γ

0
fγ(u)du, resulting in

Fγ(γ) ∼
aγ,0

1 + bγ,0
γ1+bγ,0 . (9)

Accordingly, our main goal is to determine the linear and
angular coefficients of the PDF of S, namely a0 and b0. This
is attained in the next proposition.

Proposition. Given the asymptotic representation of the PDF
of S in (7), their corresponding linear and angular coefficients
are given, respectively, by

a0 =
ΦΓ(2m<)

N

Γ(2Nm<)

∞∑
i1,...,iN=0

Γ
(
m> +

∑N
l=1 il

)
(
2 +

∑N
l=1

λ2
r,l

σ2
r,l

δ2
r,l

)∑N
l=1

il

×
N∏

n=1

Γ(in + |m–|)
Γ(in +m>)in!

(
σr,nλr,n

δr,n

)2in

(10a)

b0 =2Nm< − 1, (10b)

where m+ ≜ m1+m2, m– ≜ m1−m2, m< ≜ min(m1,m2),
m> ≜ max(m1,m2), r ≜ argmaxv∈{1,2} mv , and

Φ =

2N(1−2m<)

Γ(m>) Γ(m<)N

(∏N
n=1

1
δ21,nδ22,n

)m<

(
1 +

∑N
l=1

λ2
1,l

σ2
1,l

2δ2
1,l

)m1
(
1 +

∑N
l=1

λ2
2,l

σ2
2,l

2δ2
2,l

)m2
. (11)

Proof. Please, see the Appendix. ■

Leveraging (10a) and (10b), the linear and angular coeffi-
cients in (8) can finally be expressed, respectively, as

aγ,0 =
ΦΓ(2m<)

N

2Γ(2Nm<)γ̄
b0+1

2

∞∑
i1,...,iN=0

Γ
(
m> +

∑N
l=1 il

)
(
2 +

∑N
l=1

λ2
r,l

σ2
r,l

δ2
r,l

)∑N
l=1

il

×
N∏

n=1

Γ(in + |m–|)
Γ(in +m>)in!

(
σr,nλr,n

δr,n

)2in

(12a)

bγ,0 =Nm< − 1. (12b)

1The linear and angular coefficients are crucial in asymptotic analysis as
they influence the coding and diversity gains of diverse performance metrics,
such as the outage probability or average symbol error probability [18].

It is worth noting that (8), (9), and (12) form the analytical
foundation for evaluating system performance in the high-
SNR regime. In particular, from (12), it is evident that aγ,0
aggregates contributions from all marginal asymptotic terms,
thereby encapsulating the channel correlation parameters (λn)
of each individual channel. In contrast, the angular coefficient
bγ,0 remains unaffected by channel correlation. Importantly,
the N -fold series in (12a) cannot be asymptotically reduced,
i.e., retaining only the first, supposedly dominant, terms of
each series fail to capture the true asymptotic behavior. This is
because the higher-order terms become increasingly significant
as the correlation coefficients increase. Therefore, all terms
in the N -fold series must be included. As will be shown
in IV, correlation—reflected through aγ,0—primarily induces
a horizontal shift in the asymptotic behavior of the PDF
or CDF of γ, shifting it to the left. Notably, the slope
remains unchanged at Nm< − 1, consistent with the case of
independent fading. Thus, aγ,0 quantifies the horizontal shift in
the asymptotic behavior caused by the presence of correlated
fading channels. The behavior and performance implications
of aγ,0 will be further explored in Section IV.

Taking the limit as λr,n → 0, the linear coefficient for the
independent case can be obtained as

aγind,0 =

2N−1

(
Γ(|m−|)Γ(2m<)

Γ(m1) Γ(m2)

)N

Γ (2Nm<) γ̄
b0+1

2

N∏
n=1

(
1

σ2
1,n σ2

2,n

)m<

. (13)

The angular coefficients for the correlated and independent
cases remain the same, i.e., bγind,0 = bγ,0 = Nm< − 1.

1) Truncation Error: Note that (10a) involves N nested
series. In practice, however, the computation of the linear coef-
ficient in (10a) requires truncating the infinite series to a finite
number of terms, denoted here by τ . This truncation process
gives rise to an approximation error, known as truncation error,
which from (10a) can be obtained as

ϵa0(τ) =
ΦΓ(2m<)

N

Γ(2Nm<)

∞∑
i1,...,iN=τ

Γ
(
m> +

∑N
l=1 il

)
(
2 +

∑N
l=1

λ2
r,l

σ2
r,l

δ2
r,l

)∑N
l=1

il

×
N∏

n=1

Γ(in + |m–|)
Γ(in +m>)in!

(
σr,nλr,n

δr,n

)2in

. (14)

Since the N -fold series in (14) lacks a closed-form solution,
deriving an upper bound for ϵa0(τ) offers a practical and
effective alternative. To approach this, we focus on the term
I ≜ Γ(m> +

∑N
l=1 il). The key idea is to establish an

upper bound for I that decouples the composite argument
m> +

∑N
l=1 il from the gamma function, thereby allowing

the N -fold series in (14) to be evaluated in closed form.
Leveraging the log-convexity of the gamma function, we
have I ≤

∏N
n=1 Γ(m> + in)K, where K is a correction

factor that accounts for the gamma function’s submultiplicative
behavior over sums. Considering the growth behavior of the
gamma function and the slack introduced by the exponential
function, we set K = exp(in). This yields the upper bound
I ≤

∏N
n=1 Γ(m> + in) exp(in), where the exponential term

serves to relax the bound, ensuring that the inequality remains
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Fig. 1: Exact and asymptotic CDF of γ for m2 = 2, N = 30,
γ̄ = 1 dB, and different values of λ and m1.

valid for all in and m>. Substituting this bound into (14) and
after lengthy algebraic manipulations with the aid of [17, eq.
(07.24.02.0001.01)], we get

ϵa0(τ) <
ΦΓ(2m<)

N

Γ(2Nm<)

N∏
n=1

eτ Γ (|m–|+ τ)(
2 +

∑N
l=1

λ2
r,l

σ2
r,l

δ2
r,l

)τ

(
σr,nλr,n

δr,n

)2τ

× 2F̃1

1, |m–|+ τ, 1 + τ,
e
(

σr,nλr,n

δr,n

)2
2 +

∑N
l=1

λ2
r,l

σ2
r,l

δ2
r,l

 . (15)

In practice, the truncation bound in (15) plays a pivotal
role, as it establishes the sufficient number of terms required
in (10a) to ensure a predefined accuracy (error) threshold.

IV. NUMERICAL RESULTS

In this section, we validate the proposed analytical formu-
lations via Monte Carlo simulations and investigate the effects
of correlated fading. For the analysis, we adopt the following
parameters: σ1,n = σ2,n = 1 and λ ≜ λ1,n = λ2,n for all
n, i.e., we assume uniform correlation among the elements
of both H1 and H2 for illustrative purposes—although the
proposed analysis remains applicable to scenarios with arbi-
trary correlation. Consequently, the correlation coefficient is
ρ ≜ ρn,k = λ4 for all n ̸= k. Finally, we use τ = 20 terms
in the linear coefficient for all scenarios, since the truncation
error in (15) decreases rapidly with increasing number of RIS
elements N , reaching values below 10−50.

Fig. 1 depicts the exact and asymptotic CDF of γ consid-
ering m2 = 2, N = 30, γ̄ = 1 dB, and different values
of λ and m1. Notice that, for a fixed m1, both the exact
and asymptotic curves shift progressively to the left as λ
increases. A similar trend is observed when λ is fixed and
m1 decreases. This leftward shift indicates that a stronger
correlation or more severe fading (i.e., lower m1) reduces the
coding gain at a given average SNR per symbol, degrading
system performance. The worst-case scenario occurs when m1

reaches its minimum value and λ its maximum, reflecting the
combined impact of deep fading and strong correlation.

Fig. 2 illustrates the linear coefficient aγ,0 (for both inde-
pendent and correlated cases) as a function of the correlation
coefficient ρ assuming γ̄ = 1 dB and different values of N
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(a) m1 = 2, m2 = 1, and different values of N .
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(b) m2 = 2, N = 30, and different values of m1.
Fig. 2: Asymptotic linear coefficient aγ,0 versus correlation
coefficient ρ for γ̄ = 1 dB and different values of N and m1.

and m1. As shown in Fig. 2-(b), increasing the number of
RIS elements N or the fading shape parameter m1 (larger
values of m1 correspond to less severe fading conditions) leads
to a reduction in aγ,0. This trend is consistent in both the
independent and correlated cases. Intuitively, this corresponds
to a rightward shift of the exact and asymptotic CDF curves,
resulting in higher coding gain at a given average SNR
per symbol, thus improving system performance. Also, from
Figs. 2-(a) and 2-(b), it is observed that for the correlated
case, aγ,0 remains nearly constant for values of ρ ≲ 0.5,
aligning with the value observed in the independent case—
as expected. However, for ρ ≳ 0.5, aγ,0 rapidly increases and
reaches its maximum at ρ = 1. At first glance, the extremely
small variations in aγ,0, on the order of 10−100, might seem
negligible for system performance. However, this is not the
case, as it is the combined effect of both aγ,0 and bγ,0 that
determines the system’s coding gain [18]. Consequently, even
slight changes in aγ,0 can lead to significant improvements or
degradations in overall system performance.

V. CONCLUSIONS

This study analyzed the SNR statistics of RIS-assisted
wireless communication systems operating over arbitrarily
correlated Nakagami-m fading channels. The asymptotic anal-
ysis demonstrated that spatial correlation primarily influences
the linear coefficient, while leaving the angular coefficient
unchanged. It also quantified how stronger correlation and
more severe fading degrade system performance.

APPENDIX
PROOF OF THE PROPOSITION

Let Z ≜ [Z1, . . . , ZN ]T = H1 ◦ H2. This product can be
obtained via the N -dimensional Mellin convolution as

fZ(z) =

∫
RN
+

fH1 (h1) fH2 (z⊘ h1)
1

Π(h1)
dh1, (16)

where z = [z1, . . . , zN ]T , h1 = [h1,1, . . . , h1,N ]T , and h2 =
[h2,1, . . . , h2,N ]T . Due to the interdependence among the
elements of H1 and H2, the elements of Z are inherently cor-
related. Since the joint PDFs of H1 and H2, both given by (4),
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are expressed in terms of a single integral involving products
of modified Bessel functions of the first kind, the N -fold inte-
gral in (16) cannot be evaluated in closed form. To address this,
we substitute the modified Bessel functions of the first kind
with their series representations [17, eq. (03.02.02.0001.01)].
Then, by interchanging the order of summation (from the
Bessel series) and integration, the resulting N -fold integral
becomes tractable and can be computed term by term. This
yields a new expression for the PDF of Z, now given in terms
of modified Bessel functions of the second kind, as follows:

fZ(z) =

(
1 +

∑N
l=1

λ2
1,lσ

2
1,l

2 δ2
1,l

)−m1
(
1 +

∑N
l=1

λ2
2,lσ

2
2,l

2 δ2
2,l

)−m2

Γ(m1)Γ(m2)

×

[
N∏

n=1

(
1

2 δ21,n

)m1−1(
1

2 δ22,n

)m2−1

δm–−2
1,n δ−m–−2

2,n

]

×

 ∞∑
i1,...,iN=0

∞∑
j1,...,jN=0

Γ

(
m1 +

N∑
l=1

il

)
Γ

(
m2 +

N∑
l=1

jl

)

×
N∏

n=1

zm++in+jn−1
n Km–+in−jn

(
zn

δ1,nδ2,n

)
Γ (m1 + in) Γ (m2 + jn) in!jn!

×δin−jn
1,n

(
λ1,nσ1,n

2 δ21,n

)2in
(

N∑
n=1

λ2
1,nσ

2
1,n

2 δ21,n
+ 1

)−in

× δin−jn
2,n

(
λ2,nσ2,n

2 δ22,n

)2jn
(

N∑
n=1

λ2
2,nσ

2
2,n

2 δ22,n
+ 1

)−jn
 . (17)

We now conduct an asymptotic analysis of the PDF of Z
near the origin, i.e., in the region where fZ(z) → 0, with
0 denoting the N -dimensional null vector. To this end, we
first exploit the symmetry property of the modified Bessel
function of the second kind, namely, Kν(·) = K−ν(·) [17,
eq. (03.04.04.0002.01)]. Next, we apply the series expansion
of the modified Bessel function of the second kind [19, eq.
(6)]. Finally, by retaining only the dominant (first) terms in
the resulting Bessel series expansion, we obtain the following
simplified asymptotic expression:

fZ(z) ∼
N∏

n=1

an,0z
bn,0
n , (18)

where

an,0 =Φ
1
N

∞∑
i1,...,iN=0

Γ
(
m> +

∑N
l=1 il

) 1
N

(
2 +

∑N
l=1

λ2
r,l

σ2
r,l

δ2
r,l

) 1
N

∑N
l=1

il

×
N∏

n=1

Γ(in + |m–|)
1
N

(Γ(in +m>) in!)
1
N

(
σr,nλr,n

δr,n

) 2in
N

(19a)

bn,0 =2m< − 1. (19b)

It can be noticed that (18) shares the same functional form
as [18, eq. (5)]. This structural similarity allows us to infer
that the elements of Z (i.e., Z1, . . . , ZN ) exhibit asymptotic
independence, i.e., in the vicinity of the origin, the joint
asymptotic PDF of Z factorizes into the product of its marginal
asymptotic PDFs. With this insight, we are now in a position
to derive the asymptotic representation of the sum in (6).

Specifically, by substituting an,0 and bn,0 from (19) into [18,
eq. (4)], we obtain the linear and angular coefficients of the
PDF of S, as presented in (10). This completes the proof.
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