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Physics-informed PatchGAN for atmospheric
turbulence Phase Screen Generation
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Abstract— We propose a physics-informed generative adver-
sarial network (GAN) for synthesizing Kolmogorov-based at-
mospheric turbulence phase screens, supporting free-space op-
tical (FSO) link simulation. Our approach integrates a Patch-
GAN discriminator with spectral normalization, combined with
physics-inspired loss function components, including weighted
spectral loss, higher-order moment matching, and minibatch
diversity to enhance realism and variability. Training leverages
relativistic adversarial loss, instance noise injection, and learning
rate balancing for improved stability. Statistical and visual
comparisons suggest that our framework produces phase screens
with Kolmogorov-like statistics and realistic diversity, offering a
tool for modeling optical propagation through turbulence. By
providing a differentiable and physically consistent turbulence
model, we aim at enabling the integration of realistic atmospheric
effects into end-to-end trainable FSO communication systems,
thereby facilitating more accurate optimization and overcoming
the limitations of non-differentiable classical models.

Keywords— FSO, atmospheric turbulence, GAN, Kolmogorov
spectrum, OAM

I. INTRODUCTION

In emerging paradigms for end-to-end optimization of free-
space optical (FSO) communication systems, it is highly
desirable to model the complete transmitter-channel-receiver
chain within a unified, differentiable deep learning frame-
work. However, modeling atmospheric turbulence based on
Kolmogorov theory poses significant challenges, as practical
implementations often require approximations and numerical
methods that can complicate the differentiation process [1].
Previous attempts to integrate turbulence effects into neural
network architectures have relied on approximation techniques
like gradient passthrough, which introduced modeling inaccu-
racies and limited the overall performance improvements. To
address these limitations, we propose a generative adversarial
network (GAN)-based approach to emulate turbulence phase
screens. By providing a realistic, lightweight, and naturally dif-
ferentiable model of turbulence effects, our method facilitates
proper backpropagation through the channel and enhances the
feasibility of accurate end-to-end optimization strategies.

In order to simulate such turbulence effects in practical set-
tings, various methods for phase screen generation have been
developed. Generation of atmospheric phase screens plays a
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central role in simulations in adaptive optics, free-space opti-
cal communication, and astronomical imaging. Traditionally,
the generation of atmospheric turbulence phase screens has
relied on Fourier-based spectral synthesis techniques, which
employ filtering in the frequency domain using models such
as the Kolmogorov or von Kármán turbulence spectra [2], [3],
[4]. While these classical approaches can yield high-fidelity
representations of turbulence, they are often computationally
intensive, particularly when simulating large apertures or high-
resolution screens [5].

In recent years, data-driven methodologies for atmospheric
phase screen generation have emerged as promising alterna-
tives to classical approaches. Harnessing advances in deep
learning, generative adversarial networks (GANs) [6] have
demonstrated the ability to efficiently learn and reproduce
complex statistical distributions directly from data. This ap-
proach offers substantial reductions in computational require-
ments while maintaining, and maybe even improving, the
fidelity of turbulence statistics such as those predicted by the
Kolmogorov model.

Most prior works utilize standard adversarial losses as their
primary training objective [7], while only a few incorporate
explicit physical metrics—such as spectral penalties or sta-
tistical constraints—into their composite loss functions [8].
The use of more sophisticated statistical losses, including
minibatch diversity enforcement and higher-order moment
matching (skewness and kurtosis), as well as advanced GAN
stabilization techniques, has been seldom explored in the
context of atmospheric phase screen generation.

Here, we present a GAN architecture in which the discrim-
inator is based on the PatchGAN paradigm and incorporates
spectral normalization. The generator and discriminator are
trained jointly under multiple physics- and statistics-informed
regularizations. Experimental results demonstrate that this
approach can generate physically plausible and highly diverse
synthetic phase screens, faithfully capturing the statistical
properties of atmospheric turbulence.

II. METHODOLOGY

In this section, we describe the system architecture designed
to generate synthetic atmospheric phase screens, as well as its
main features.

A. Network Architecture

The system is composed of a generator network and a
discriminator network. The discriminator serves as a classifier
tasked with distinguishing between genuine samples drawn



XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

from the dataset and synthetic samples produced by the
generator. Conversely, the generator is trained to produce
synthetic data that is statistically indistinguishable from real
samples, thereby aiming to deceive the discriminator during
the adversarial learning process.

In this work, we refer to simulated phase screens generated
via classical spectral synthesis using the Kolmogorov power
law as ‘real’ samples, in accordance with GAN terminology.
While these are not experimentally measured screens, they
serve as the statistical reference for training the generator.

Throughout training, the generator and discriminator
networks are optimized in an adversarial fashion. The
discriminator seeks to maximize its ability to correctly
distinguish real samples from generated ones, while the
generator aims to maximize the discriminator’s likelihood of
misclassifying generated samples as real. This adversarial
interplay drives both networks toward improved performance,
ultimately resulting in the generation of realistic synthetic
phase screens.

1) Generator: The generator network is designed to trans-
form a latent vector z of dimension 100, randomly sampled
from a standard normal distribution, into a two-dimensional
phase screen of size 64 × 64, corresponding to the synthetic
turbulence phase screen presented as input to the discriminator.
In the first stage, the input vector passes through a fully
connected linear layer that projects it into a feature vector
of length 128× 8× 8 = 8192, which is then reshaped into a
tensor of dimensions [128, 8, 8].

This intermediate tensor is processed through a sequence
of three transposed convolutional layers to incrementally
increase the spatial resolution while reducing the number of
channels. The first transposed convolution layer upsamples
the feature map to 16 × 16 while reducing the depth to
64 channels, followed by batch normalization and a ReLU
activation. The second layer further increases the resolution
to 32 × 32 with 32 channels, again followed by batch
normalization and ReLU activation. The final transposed
convolution produces a single-channel output at the target
resolution of 64 × 64, yielding the synthetic phase screen.
Batch normalization is applied after each upsampling step
except the last, and all intermediate activations employ ReLU
nonlinearity. The architecture does not apply an explicit
output activation function, so the range of generated phase
values is determined by the preceding layers. This generator is
trained end-to-end to capture both the spectral and statistical
properties of atmospheric turbulence phase fluctuations, as
modeled by the Kolmogorov theory.

2) PatchGAN Discriminator: The discriminator employs a
PatchGAN architecture to distinguish between real and syn-
thetic phase screens by focusing on local image statistics. The
network receives a single-channel input image of size 64×64
and processes it through a sequence of four convolutional
layers. Each convolution is equipped with spectral normal-
ization to enforce Lipschitz continuity, which has been shown
to significantly improve the stability of GAN training [10].

The initial convolutional layer expands the input to 32

channels at half the spatial resolution, followed by a Leaky
ReLU activation. This is followed by a second convolution
that increases the channel count to 64 while maintaining the
reduced spatial size, accompanied by batch normalization and
another Leaky ReLU activation. The third convolutional layer
further increases the channel count to 128, also followed by
batch normalization and Leaky ReLU activation.

The final convolution maps the features to a single output
channel, producing a 7 × 7 feature map instead of a single
scalar. Each unit of this output map provides a local real/fake
prediction for overlapping 46 × 46 patches across the input
phase screen. This patch-based approach enforces the learning
of high-frequency local patterns and textures, which is critical
for accurately modeling the fine-grained structure of atmo-
spheric turbulence. By leveraging spectral normalization, batch
normalization, and Leaky ReLU activations, the discriminator
achieves robustness against training instabilities and overfit-
ting, effectively guiding the generator to produce phase screens
that are both globally and locally consistent with the statistics
of the Kolmogorov model.

B. Loss Functions

The incorporation of physics-inspired loss terms is central
to our generative modeling strategy. This subsection provides
an overview of the loss functions and quantitative metrics
employed to guide the training process. Our objective is to
synthesize phase screens that faithfully reproduce the physical
and statistical properties of atmospheric turbulence.

To this end, the generator is trained using a composite
loss function comprising several complementary terms. These
include an adversarial realism constraint, spectral fidelity en-
forcement, higher-order moment matching, and diversity pro-
motion, each designed to encourage the generation of samples
consistent with both theoretical expectations and empirical
characteristics. Formally, the generator’s total loss is expressed
as a weighted sum of the following components:

LG = LGAN + λspec Lspec + λmom Lmom + λdiv Ldiv (1)

where λ∗ are empirically chosen hyperparameters.
a) Adversarial (PatchRSGAN) Loss:: We employ the

relativistic average PatchGAN loss [11], using the softplus
function as a numerically stable alternative to the standard
negative log-likelihood. The adversarial term for the generator
is:

LGAN = Exf
[softplus (−(D(xf )− Exr

D(xr)))] (2)

where D(x) denotes the PatchGAN discriminator output, xr

are real samples, and xf are generated (“fake”) samples. As
previously mentioned, ‘real’ refers to Kolmogorov-simulated
phase screens used as a reference in GAN training, whereas
‘fake’ designates the outputs generated by the network under
optimization during adversarial learning.

b) Spectral Loss:: To ensure that the power spectra of
generated phase screens match the target Kolmogorov spec-
trum, we include a weighted ℓ2 loss between their normalized
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radially averaged spectra:

Lspec = α

kmax∑
k=kmin

wk [Sk(G(z))− S∗
k ]

2 (3)

where Sk(G(z)) and S∗
k denote the spectrum of a generated

and a reference screen at frequency bin k, wk are cosine
weights, and α is a scaling factor.

c) Higher-Order Moment Loss:: Recognizing that simple
first- and second-order statistics are insufficient for capturing
phase screen realism, we penalize discrepancies in skewness
and kurtosis (which are functions of third and fourth central
moments) between real and fake samples:

Lmom = |skew(G(z))− skew(xref)|
+ 0.25 |kurt(G(z))− kurt(xref)| (4)

where skew(x) and kurt(x) are the sample skewness and
excess kurtosis, respectively, over all pixels.

d) Diversity Loss:: To discourage mode collapse and
encourage diversity among the generated samples within a
batch, we include a negative (normalized) covariance trace
penalty:

Ldiv = −α
1

BHW
Tr [Cov(G(z1), . . . , G(zB))] (5)

where Tr denotes the trace, Cov is the sample covariance, B
is the batch size, H , W are the spatial dimensions and α is a
scaling factor.

e) Note:: A structure function loss, penalizing mismatch
in two-point statistics, was implemented for analysis but omit-
ted from generator updates in the current work (λstruct = 0).

C. Training

Training a generative adversarial network (GAN) can be
formally cast as a two-player minimax game, wherein the gen-
erator G and the discriminator D pursue opposing objectives.
This dynamic is encapsulated by the value function V (G,D):

min
G

max
D

V (G,D) (6)

At equilibrium—that is, a Nash equilibrium in the language
of game theory—the following conditions hold:

• The discriminator cannot consistently distinguish real
samples from synthetically generated ones, thereby as-
signing equal probability to both classes: D(a) = 0.5 for
any input a.

• The generator has succeeded in accurately reproducing
the target data distribution, so that the distribution of
generated samples PG(z) matches the empirical data
distribution Pa(a).

In our setting, a classical Kolmogorov phase screen gener-
ator, based on spectral synthesis, is used to create a training
dataset comprising 1,000 phase screens, each with a spatial
size of 64× 64 pixels. This dataset serves as the reference for
supervising the adversarial training process.

During initial training experiments, we observed a ten-
dency for the discriminator to become excessively confi-
dent—quickly converging to degenerate solutions in which

all inputs, including real samples, were misclassified as fake.
This “saturation” of the discriminator reduced the magnitude
of gradients provided to the generator, leading to vanishing
feedback and poor generative performance. To counteract this
instability, we adopted an asymmetric training schedule in
which, for each discriminator update, the generator is updated
four times. This adjustment helps to equilibrate the adversarial
dynamics and ensures that neither network outpaces the other,
thus mitigating the risks of instability and mode collapse while
promoting robust convergence.

Furthermore, we introduce instance noise as an additional
stabilization technique. Specifically, controlled Gaussian noise
is injected into both real and generated images prior to
presentation to the discriminator. Adding such noise serves to
smooth the data distributions and the discriminator’s decision
boundary, particularly in the early stages of training. This regu-
larization prevents the discriminator from fixating on spurious
high-frequency artifacts or trivial statistical differences, thus
compelling the generator to align its output with the target
data distribution at both global and structural levels [9].

Jointly, these modifications contributed to a more stable and
productive adversarial optimization process, yielding improved
sample quality and more faithful reproduction of turbulence
statistics.

III. SIMULATION RESULTS

After implementing the previously described stabilization
techniques, the adversarial dynamics reached a desirable equi-
librium. As illustrated in Figure 1 , the discriminator’s success
rate converged to approximately 0.5 after 960 discriminator
update steps. Given that each epoch comprises 32 discrimina-
tor updates, this indicates that around 30 epochs are required
for convergence. Notably, Figure 1 also demonstrates that this
equilibrium between the discriminator and the generator is
maintained up to at least 50 epochs. This sustained behavior
aligns with the theoretical Nash equilibrium, in which the
discriminator is unable to reliably distinguish between real
and generated samples—assigning them equal probability.

Fig. 1. Evolution of Discriminator Sucess Rate during training

Further evidence of successful training is observed in the
close match between the empirical distributions of phase
values for both real and generated phase screens. As illustrated
in Figure 2, the histogram of the generated data closely
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parallels that of the true Kolmogorov phase screens, indicating
strong statistical similarity and suggesting that the generator
successfully avoided mode collapse.

Fig. 2. Comparison of Generated vs. True Phase Distribution Histograms
(Values: Point Count per Bin, Scale: Radians)

Finally, Figure 3 presents qualitative visual comparisons
between representative synthetic and real phase screens. The
generated images faithfully reproduce the spatial structures
and complexity characteristic of turbulence-induced phase
variations, underscoring the effectiveness of the proposed ap-
proach in capturing both local and global statistical properties.

Fig. 3. Synthetic (Generated) and Real (True) Phase Screen after training;
scale in radians

The quantitative and qualitative analyses presented in this
section validate the effectiveness of the proposed framework
in generating physically realistic phase screens. In the next
section, we discuss the broader implications of these findings
and the potential for further improvements.

IV. DISCUSSION

The use of physics-based and higher-order statistical losses
remains seldom explored in the neural phase screen generation
literature. Our findings suggest that such regularizations are
effective in ensuring the physical and statistical plausibil-
ity of synthetic screens. Additionally, the incorporation of
relativistic adversarial loss and advanced GAN stabilization
techniques—commonly employed in computer vision, but rare
in this domain—proved to be beneficial for training stability
and sample quality.

Although the structure function loss was not incorporated
into the present results, the proposed combination of advanced
statistical and adversarial modeling strategies already repre-
sents a significant advancement in the state of the art for
atmospheric turbulence simulation using data-driven methods.
Future investigations will explore the inclusion of explicit
structure function regularization to further enhance physical
fidelity.

The insights gained from this work highlight both the
strengths and the current limitations of the proposed approach,
setting the stage for future advancements. We summarize
the main contributions and potential directions for further
investigation in the next section.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel framework for the artificial gen-
eration of Kolmogorov-based atmospheric turbulence phase
screens, leveraging generative adversarial networks with mul-
tiple physics- and statistics-informed loss functions. The syn-
ergy between spectral, higher-order moment, diversity, and
relativistic adversarial losses, combined with advanced train-
ing techniques, constitutes a meaningful advancement beyond
previously published approaches.

Our results demonstrate that the proposed method effec-
tively captures both the global and local statistical properties of
atmospheric turbulence, producing synthetic phase screens that
closely match Kolmogorov-based references in both structure
and distribution.

Although the explicit use of structure function loss was
deferred in this study, its incorporation remains a promising di-
rection for future work aimed at further enhancing the physical
fidelity of synthetic turbulence modeling. Future efforts will
also explore scaling to larger screen sizes and investigating
the transferability of the learned turbulence representations to
downstream tasks, such as end-to-end optimization of free-
space optical communication systems.
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