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Abstract— This paper proposes a blind concurrent 
beamforming (BCB) algorithm that combines the Constant 
Modulus Algorithm (CMA) and Direct Decision (DD) in a 
cooperative structure. The proposed BCB is evaluated over a six-
dipole uniform circular array in different interfering scenarios, 
and the results are compared with the classical supervised least 
mean squares (LMS). Notably, despite operating without a 
training sequence, BCB outperformed LSM in terms of symbol 
error rate (SER). The proposed BCB effectively place nulls in the 
angular direction of the interfering signals while steering the main 
lobe toward the desired signal (DS), except in scenarios where the 
interference is spatially too close to the DS. Results show that the 
proposed BCB approach offers a robust, blind beamforming 
solution with low computational complexity and high spectral 
efficiency.  
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I.  INTRODUCTION  

In the era of advanced information and communication 
technology (ICT), society is moving toward a new technological 
revolution, characterized by significant socioeconomic 
implications. New telecommunication technologies have been 
drived by Internet of Things (IoT), transitioning from human-
centric connectivity to massive machine-type communications 
(mMTC). This evolution presents significant challenges, 
including the need for ultra-reliable low-latency 
communications (URLLC), enhanced mobile broadband 
(eMBB), and massive connectivity. 

In this scenario, beamforming techniques have been widely 
studied and applied to enhance signal quality, suppress 
interference, increase energy efficiency and enable more 
effective utilization of spatial resources. Beamforming plays a 
critical role in supporting the scalability and performance 
requirements of next-generation networks, particularly in the 
context of 5G and beyond. 

A well-known supervised beamforming algorithm is the 
least mean squares (LMS) [1]. Supervised beamforming can also 
be implemented with neural networks (NNs) [2-5]. Specifically, 
complex valued neural networks (CVNNs) have great potential 
for application in beamforming since the intrinsic complex 
structure can naturally manipulate complex-valued data, 
achieving superior performance and reduced training time 
compared with real-valued neural networks (RVNNs). 

Despite achieving good performance, supervised techniques 
require sending a training sequence, consequently reducing 
spectral efficiency. The advantage of blind approaches is the 
bandwidth saving. A blind adaptive system usually adjusts its 
transfer function via steepest descent gradient (SG) algorithm, 

aiming to minimize a cost function 𝐽 without any training 
sequence. A blind algorithm widely used for blind channel 
deconvolution is the CMA (constant modulus algorithm) [6]. 
CMA cost function is a non-convex function that presents 
multiple stationary points that often leads to a local minimum 
convergence, which results in a moderate mean square error 
(MSE) after convergence. To improve CMA performance, the 
direct decision (DD) approach is usually implemented with 
CMA. However, the switching from CMA to DD requires a 
minimum convergence level. Otherwise, DD algorithm may 
diverge. To overcome this issue, a cooperative operation of 
CMA and DD, controlled by a non-linear link, was proposed in 
[7].  

In this paper, a blind concurrent beamformer (BCB), based 
on the concurrent CMA-DD algorithm, is presented. The 
concurrent operation considerably speeds up the algorithm 
convergence compared to the CMA switched to DD. The 
proposed approach is evaluated over a six dipoles uniform 
circular array (UCA) and its performance is compared with the 
classical supervised least mean squares algorithm. Several 
scenarios were evaluated and three of them are presented. The 
first scenario presents two interfering signals (ISs) located at 
angular positions close to the desired signal (DS). In the second 
scenario the two ISs are farther from the DS but signal-to-
interference-plus-noise ratio is considerably reduced. Scenario 3 
is more challenging, featuring five ISs. The results show that, 
despite not having a training sequence, BCB algorithm reaches 
performance even superior that the supervised LMS.  

 BLIND CONCURRENT BEAMFORMING 

The proposed blind concurrent beamforming is presented in 
Fig. 1. The beamforming algorithm receives as input the voltage 
vector 𝒓ሺ𝑛ሻ ൌ ሾ𝑟ଵ 𝑟ଶ … 𝑟௄ሿ, received from the 𝐾 array elements 
and 𝑟௞ is the voltage at the 𝑘-th array element. The voltages are 
given by the sum of all signals that impinge on the array, i.e., 
the desired (DS) and interfering (IS) signals, taking into account 
the array coupling matrix 𝐶 and the respective steering vector 
Φሺ𝜃௠, 𝜙௠ሻ. The 𝑚-th steering vector expresses the magnitude 
and phase of the electromagnetic (EM) wave received by each 
𝑘-th dipole from the direction  ሺ𝜃௠, 𝜙௠ሻ of the propagation 
path, and it is given by 

𝚽ሺ𝜃௠, 𝜙௠ሻ ൌ ሾΦଵሺ𝜃௠, 𝜙௠ሻ, Φଶሺ𝜃௠, 𝜙௠ሻ, … , Φ௄ሺ𝜃௠, 𝜙௠ሻሿ் 
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(1) 

where 𝐿 is the dipole length, 𝜆 is the wavelength and 𝑥௞, 𝑦௞ and 
𝑧௞ are the coordinates of the dipole 𝑘 ൌ 1,2, … , 𝐾. 

The signal received by each one of the dipoles are firstly 
sampled by the respective ADC, and then downconverted and 
demodulated by the receiver (RX). Thus, at discrete time 𝑛, 
vector 𝒓 stores 𝐾 complex-valued baseband samples. Each 𝑟௞ 
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value of 𝒓 corresponds to the IQ (In-phase and Quadrature)  
symbol received at instant 𝑛 by the k-th dipole of the UCA. 𝒓 is 
determined by 
 

 
Fig. 1.  Blind Concurrent Beamforming block diagram. 

𝒓ሺ𝑛ሻ ൌ 𝑪 𝚽ൣ 𝒔ሺ𝑛ሻ ൅ 𝒂ሺ𝑛ሻ൧ (2) 

where 𝑪 ∈  ℂ𝑁𝐾ൈ𝑁𝐾 is the mutual coupling matrix, 𝑁௄ is the 
number of dipoles at the receiver,  𝒔ሺ𝑛ሻ ∈  ℂே೔ାଵ is the complex-
valued vector composed by the desired signal (DS) and 𝑁௜ 
interfering signals (IS) and 𝒂ሺ𝑛ሻ is the AWGN noise, with 
Gaussian distribution.  

The baseband IQ samples 𝒓ሺ𝑛ሻ ൌ ሾ𝑟1 𝑟2 … 𝑟𝐾ሿ, received 
from the 𝐾 array elements, are applied to the beamforming input 
and the beamforming output is given by 

𝑦ሺ𝑛ሻ ൌ 𝒘ሺ𝑛ሻ𝒓ሺ𝑛ሻ் (3) 

in which 𝒘ሺ𝑛ሻ is the weighting vector and ሾ∙ሿ்denotes the 
transpose operator.  

After computing the beamformer output, the weighting 
vector is updated according to cost function 𝐽 and the delta rule 
which, for CMA algorithm results in 

𝒘ሺ𝑛 ൅ 1ሻ ൌ 𝒘ሺ𝑛ሻ ൅ 𝜂஼ெ஺ሺ𝛾 െ |𝑦ሺ𝑛ሻ|ଶሻ𝒓ሺ𝑛ሻ∗ (4) 

where 𝜂஼ெ஺ is the CMA adaptive step, ሾ∙ሿ∗denotes the conjugate 
operator and 𝛾 is the CMA dispersion constant given by 

𝛾 ൌ
∑ |𝐴|ସெ

௜ୀଵ

∑ |𝐴|ଶெ
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(5) 

where M is the constellation order and 𝐴 ൌ ሼ𝑎଴ 𝑎ଵ … 𝑎ெିଵሽ is 
the constellation alphabet. The updated weighting vector is then 
used to compute a new beamformer output  

𝑦෤ሺ𝑛ሻ ൌ 𝒘ሺ𝑛 ൅ 1ሻ𝒓ሺ𝑛ሻ் (6) 

The outputs 𝑦ሺ𝑛ሻ and 𝑦෤ሺ𝑛ሻ are then quantized according to 
the M-QAM reference constellation in order to control a non-
linear link NLሺ𝑦, 𝑦෤ሻ for the DD weighting vector update, as 
follows 

𝒘ሺ𝑛 ൅ 1ሻ ൌ 𝒘ሺ𝑛 ൅ 1ሻ
൅ 𝜂஽஽NLሺ𝑦, 𝑦෥ሻሾ𝑄ሼ𝑦ሺ𝑛ሻሽ െ 𝑦ሺ𝑛ሻሿ𝒓ሺ𝑛ሻ∗ 

(7) 

where 𝜂஽஽ is the DD adaptive step and NL(𝑦, 𝑦෤) is given by 

NLሺ𝑦, 𝑦෤ሻ ൌ  ൣ1 െ 𝐷ொሺ𝑦, 𝑦෤ሻ൧ (8) 

with  

𝐷ொሺ𝑦, 𝑦෤ሻ ൌ ൜
0,   𝑄ሼ𝑦ሺ𝑛ሻሽ ൌ 𝑄ሼ𝑦෤ሺ𝑛ሻሽ
1   𝑄ሼ𝑦ሺ𝑛ሻሽ ് 𝑄ሼ𝑦෤ሺ𝑛ሻሽ  

 
(9) 

 

in which 𝑄ሼ∙ሽ represents the quantization process operator. 

II. SIMULATION SETUP 

Simulation procedure considers that the source and 
interference transmitters (TXs) and the receiver (RX) are on the 
same plane, with a zenith angle of 90°.  The RX operates with a 
six dipoles uniform circular array (UCA) at 𝑓 ൌ 850 𝑀𝐻𝑧 
(center of the UHF band). Dipoles are spaced by 𝑠ௗ ൌ 𝜆 4⁄  m 
and have a length ℓௗ ൌ 𝜆 2⁄  m, radius 𝑟ௗ ൌ 5 mm, and load 
impedance 𝑍் ൌ 50Ω, where 𝜆 ൌ 𝑐 𝑓⁄  is the signal wavelength, 
and 𝑐 ൌ 299,792,458 m/s is the speed of light in vacuum. For 
the sake of simplicity, all sources and destinations use 
quadrature amplitude modulation (QAM) or white Gaussian 
noise (WGN) (only for interferences). The beamforming input 
vector 𝒓ሺ𝑛ሻ is the received signal already sampled, 
downconverted, and demodulated (see Eq. 2).  

The signal-to-noise ratio (SNR) of the source (desired signal) 
and interferences are defined as SNRs and SNRi, respectively. 
As multiple signals are taken into account in this beamforming 
technique, we make use of signal-to-interference-plus-noise 
ratio (SINR) to measure the impact of impairments in the 
receiver, as follows 

𝑆𝐼𝑁𝑅 ൌ
𝑃௦

∑ 𝑃௜೗

ே೔
௟ୀଵ ൅ ∑ 𝑃௔೘

ே೔ାଵ
௠ୀଵ

 
 
(10) 

where 𝑃௦ is the power of the desired signal (DS), 𝑃௜೗
 and 𝑃௔೘ are 

the 𝑙-th and 𝑚-th power of interference and resultant AWGN 
noise, respectively. 

III. RESULTS 

This section presents the simulation results of the following 
scenarios: 

Scenario 1: 3 transmitters (DS plus 2 IS). DS is located at 0◦ 
azimuth angle (16-QAM) and ISs are at azimuth angles 20◦ (4-
QAM) and 240◦ (16-QAM). Source has SNRs = 25 dB and 
interferences have SNRi  = 20 dB. Signal-to-interference-plus-
noise ratio is SINR = 20 dB. 

Scenario 2: 3 transmitters (DS plus 2 IS). DS is located at 120◦ 
azimuth angle (16-QAM) and ISs are at azimuth angles 60◦ (16-
QAM) and 160◦ (64-QAM). Source has SNRs = 25 dB and 
interferences have SNRi  = 20 dB. Signal-to-interference-plus-
noise ratio is SINR = 15 dB. 

Scenario 3: 6 transmitters (DS plus 5 IS). DS is located at 1◦ 
azimuth angle (16-QAM) and ISs are at azimuth angles 30◦ (4-
QAM), 120◦ (WGN), 170◦ (16-QAM), 240◦ (WGN) and 330◦ 
(4-QAM). Source has SNRs = 30 dB and interferences have 
SNRi  = 20 dB. . Signal-to-interference-plus-noise ratio is SINR 
= 18 dB. 

The results of the proposed beamforming are compared with 
the classical supervised LMS (least mean squares) algorithm. 
The adaptive steps of BCB and LMS were empirically defined  
as 𝜂஼ெ஺ ൌ 1 ൈ 10ିସ, 𝜂஽஽ ൌ 5 ൈ 10ିଷ and 𝜂௅ெௌ ൌ 1 ൈ 10ିଶ. 
For LMS algorithm, a training sequence of 1 ൈ 10ହ samples is 
considered.  

Table I presents the symbol error rate (SER) results.  In order 
to have a fair comparison for both algorithms BCB and LMS, 
the SER is computed after a number of iterations corresponding 
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to the number of samples of the training sequence adopted to 
train the LMS equalizer. Note that BCB presents equal or 
superior performance compared to LMS, even with no training 
sequence.  

Table I – SER comparison 

Scenario BCB LMS
1 0 0
2 0 1.44 ൈ 10ିହ

3 5.55 ൈ 10ି଺ 1.00 ൈ 10ିହ

 

Fig. 2 shows the MSE convergence results. As expected, 
LMS algorithm exhibits faster convergence especially in more 
challenging conditions like Scenario 3, due to its use of a training 
sequence. On the other hand, since BCB is a blind algorithm, it 
continuously updates the weighting vector. It is worth to notice 
that, despite its higher residual MSE, BCB achieves superior 
SER performance. Fig. 3, Fig. 4 and Fig. 5 present the 
constellations obtained using BCB and LMS (after a number of 
iterations corresponding to the number of samples of the training 
sequence adopted to train the LMS equalizer) in Scenarios 1, 2 
and 3, respectively. Observe that LMS constellation displays 
greater dispersion among higher-energy symbols, leading to a 
higher SER compared to BCB. 

  

 
Fig. 2.  Mean squared error for: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3. 

Fig. 6 compares the radiation pattern obtained with BCB and 
LMS beamformers for Scenario 1, 2 and 3. In Scenario 1, Fig. 6 
(a), two interference sources (ISs) are located at angular 
positions close to the desired signal (DS). In this case, both 
beamformers successfully place nulls in the directions of the ISs. 
However, the main lobe is not aligned with the angular direction 
of DS. 

In Scenario 2, Fig. 6 (b), the ISs are located at angular 
positions farther from the DS compared to Scenario 1, and the 
scenario presents lower SINR. In this case, both beamforming 
approaches successfully place nulls in the IS directions and align 
the main lobe with DS direction. Note that the resulting BCB 

radiation pattern exhibits greater attenuation of the ISs and 
reduced side lobe level compared to the LMS. 

Scenario 3 represents a more challenging case, featuring five 
ISs. Even in this challenging scenario, the beamforming 
algorithms were able to successfully align the main lobe with DS 
direction and place nulls in the angular direction of ISs. Over 
again, the proposed BCB achieves greater attenuation of the ISs 
and reduced side lobe level than LMS algorithm. 

Fig. 3.  Constellation for Scenario 1: (a) BCB; (b) LMS 

 

Fig. 4.  Constellation for Scenario 2: (a) BCB; (b) LMS 

 

Fig. 5.  Constellation for Scenario 3: (a) BCB; (b) LMS 

IV. CONCLUSION 

This paper proposed a blind concurrent beamforming (BCB) 
solution based on the constant modulus algorithm (CMA) and 
direct decision (DD), operating concurrently. The proposed 
method was evaluated across multiple scenarios, with three 
representative cases presented in this paper. Scenario 1 involves 
two interfering signals located at angular positions close to the 
desired signal. Scenario 2 featured two interfering signals 
positioned farther from the DS, but with reduced SINR 
compared to Scenario 1. Scenario 3 represents a more a 
challenging case, with five interfering signals. The performance 
of the proposed beamforming was evaluated in each scenario 
and compared against the classical supervised least mean 
squares algorithm. 
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Fig. 6.  Radiation patters obtained with BCB and LMS beamformers:      
(a) Scenario 1; (b) Scenario 2; (c) Scenario 3. 

In all scenarios, the proposed BCB successfully shaped the 
radiation pattern. Except from Scenario 1, in which the 
interfering signals are too close to the desired signal, both 
algorithms, BCB and LMS, successfully aligned the main lobe 
with the desired signal direction and place nulls in the angular 
directions of interference signals. In terms of symbol error rate 
(SER), BCB outperformed LMS, despite LMS achieved lower 
MSE values across all scenarios. The superior SER performance 
is attributed to BCB's ability to reduce the dispersion of in-phase 
and quadrature (IQ) symbols, particularly among the higher-
energy constellation symbols, in comparison to LMS. 

Overall, the results show that the BCB is a robust blind 
beamforming, that presents low complexity and spectral 
efficiency, as it does not require a training sequence like LMS 
does. 
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