
XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

PointPCA2-RS: PointPCA2 with Resource Saving
Arthur Henrique Silva Carvalho and Pedro Garcia Freitas

Abstract— This paper introduces PointPCA2-RS, a lightweight
version of PointPCA2 with emphasis on low computational
resources usage. PointPCA2-RS optimizes the original PointPCA2
by re-implementing it using a different programming language,
data structures, and specific algorithmic details. Designed to
evaluate visual quality, both projects extract identical features
from point cloud (PC) data. Their core functionalities are
similar, including Principal Component Analysis (PCA) on local
geometric data, computation of spatial and geometric descrip-
tors, and feature pooling and aggregation. These attributes
are achieved through a programming language change, which
positively impacts architecture and performance. PointPCA2-
RS adopts a modular approach optimized for performance and
maintainability, being more suitable for large-scale or real-time
applications. Experimental results demonstrate the high perfor-
mance of PointPCA2-RS against PointPCA2 without sacrificing
prediction accuracy. PointPCA2-RS outperforms state-of-the-art
point cloud quality assessment (PCQA) metrics, offering signifi-
cant improvements for PCQA field. The code of PointPCA2-RS
metric is available at https://github.com/arthurhscar
valho/pointpca2-rs.

Keywords— Point cloud, quality assessment, resource saving

I. INTRODUCTION

Point clouds are 3D signals and the primary modality for
representing captured real-world scenes. Applications range
from autonomous driving to virtual and augmented reality. As
a result, the need to obtain methods capable of efficiently as-
sessing the quality of these PCs becomes increasingly critical.
Nevertheless, their intrinsic complexity and data variability
impose considerable challenges in ensuring PC visual quality.

There are two main approaches to assess the PC quality:
subjective and objective. Subjective quality assessment in-
volves evaluating the perceived visual quality based on human
judgment. It requires tiresome experiments for the evaluation
of the visual stimuli and produces a scalar score that enables
validation of how well objective metrics correlate with human
perception. Although subjective methods are the baseline
for understanding how humans perceive the quality of point
clouds based on the visual stimuli they receive, these methods
are costly, time-consuming, and labor-intensive, making them
unsuitable for many applications. Objective approaches, on
the other hand, provide a more efficient and scalable way to
evaluate PCs, complementing subjective assessments. These
approaches use computational algorithms, known as ‘quality
metrics’, that generate numerical scores. These scores must
correlate well with subjective assessments, ensuring they re-
flect human perception.

Arthur Henrique Silva Carvalho and Pedro Garcia Freitas are with Depart-
ment of Computer Science of University of Brasília (UnB), e-mail: henrique-
arthur.ah@aluno.unb.br, pedro.freitas@unb.br; This work was supported by
the Federal District Research Support Foundation (FAP-DF), the Coordination
for the Improvement of Higher Education Personnel (CAPES), and by the
National Council for Scientific and Technological Development (CNPq).

Due to the importance of objectively assessing the quality
of PCs, a myriad of objective metrics have been proposed
in recent years. Existing objective quality metrics are mod-
eled using very assorted strategies. Metrics based on point-
to-point (P2P) [1], point-to-plane (P2Pl) [2], plane-to-plane
(Pl2Pl) [3], and point-to-distribution (P2D) [4] distances pri-
marily focus on measuring geometric fidelity and occasionally
ignore the perceptual nuances observed by humans, failing
to capture local structures that are essential to determine
the perceptual quality of PCs. Although recent research has
explored perceptual-based metrics [5], [6], [7], many of these
approaches remain limited in their ability to effectively capture
the complex structural variations in PCs while maintaining low
computational resource consumption [8].

While fidelity metrics (i.e., P2P, P2Pl, etc.) are easy to
implement and require low computational resources, they
generally show little correlation with subjective data. On the
other hand, perceptual metrics exhibit high correlation with
perceptual data at the cost of high computational resource
consumption. In this scenario, descriptor-based methods offer
the best trade-off between efficiently predicting subjective
scores and maintaining computational efficiency [9], [10].
Using the intrinsic connectivity of PCs, descriptor-based meth-
ods can represent both local and global structures, as well
as incorporate texture information and other visual attributes
that may influence human perception of quality. For instance,
local binary patterns (LBP) [11], local luminance patterns
(LLP) [12], and their variants [13], [14], [15] have demon-
strated the potential of these descriptors to extract distortion-
aware features to model efficient quality metrics with low
computational consumption. More recently, the introduction
of PCA, as seen in PointPCA [16] and PointPCA2 [17], has
shown promise in representing PC quality through learning-
based techniques.

PointPCA [16] and PointPCA2 [17] are currently the state-
of-the-art (SOTA). PointPCA employs geometric and textural
descriptors computed per point to extract quality-aware fea-
tures. Inspired on it, PointPCA2 performs PCA only on the
geometry data while enriching existing geometry and texture
descriptors, that are computed more efficiently and with less
computational resources. Similarly to PointPCA, PointPCA2
predicts the quality score through a learning-based fusion of
individual predictions from geometry and texture descriptors
that capture local shape and appearance properties, respec-
tively. In this paper, PointPCA-RS leverages local structure
analysis for PCQA. Our method focuses on extracting local
descriptors using fewer system resources, achieving substan-
tially faster performance with reduced memory consumption.

The rest of this paper is organized as follows. In Section II,
we present the proposed method. Section III describes the
experimental results. Finally, Section IV concludes the paper.

XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

II. METHODOLOGY

A PC is a set of 3D points, each having spatial coordinates
and color information. Formally, a PC of n points can be
described as a set P={(pi, ci) | i = 1, 2, · · · , n}, where
each point pi=(xi, yi, zi) is associated with a color attribute
ci=(ri, gi, bi). A is defined as the reference point cloud (RPC),
whose K nearest points correspond to the distorted point cloud
(DPC) B. Given a query point pi of a RPC A, the coordinates
of the k nearest neighbors (NNs) of pi are indicated as
pg,FK =(xK, yK, zK)T with 1 ≤ K ≤ k and F ∈ {A,B}. The
geometric representation of pi is expressed as pg,Ai , while the
geometry of its NN in B is represented as pg,BK . At first, the
covariance matrix ΣA

i is computed as

ΣiA =
1

k

k∑
j=1

(
pg,Aj − p̄g,Ai

)
·
(
pg,Aj − p̄g,Ai

)⊤
, (1)

where p̄g,Ai = 1
k

∑k
j=1 p

g,A
j is the centroid of the sampled near-

est points. Next, eigen-decomposition is performed on ΣA
i to

derive the eigenvectors, which constitute an orthonormal basis
V A made up of eigenvectors vAm with corresponding eigen-
values λAm, where λA1 >λA2 >λA3 . Subsequently, RPC and DPC
neighborhoods are projected onto the new orthonormal basis,
ωF
j =

(
pg,Fj − p̄g,Ai

)
· V A. PCA is applied to the covariance

matrix of ωB
j to derive the eigenvectors vBm and eigenvalues

λBm. The mapped coordinates ωF
j , eigenvectors vFm, and unit

vector uTm are then used to form the descriptors in Table I.
Similar to [18], multiple distances are computed based

on the descriptors in Table I. The Euclidean distance d1 is
employed to quantify the pairwise distances between query
points in the transformed space to generate the rα =

√
Σmd21

predictor. The point-to-plane distance, denoted as rβ = |d2|,
is measured using the absolute value, where d2 represents the
distance from a point to the reference axes after projection.
The relative difference for covariance features is defined as:

rγ =
|qA ⊙ qB −Q|
qA ⊙ qB

, (2)

where {qF=λF , Q=Σ} and {qF=s̃F , Q=Σ̃} for geometry and
texture attributes, respectively. For the remaining descriptors,
the relative difference formula from [19] is applied:

rδ =
|ϕA − ϕB|

|ϕA|+ |ϕB|+ ε
, (3)

where ε is a small constant to avoid division by zero. No-
tationally, distances rρ and rθ correspond to Pm and θm,
respectively. Features are aggregated predictors. The predictors
ψi,j,k re computed for each point pi, each descriptor j, and
each distance function rk (k ∈ {α, β, γ, δ, ρ, θ}). This process
is applied to all descriptors j in Table I with their associated
distance functions rk, pooling them to derive one feature fj,k:

fj,i =
1

|A|

A∑
i=1

ψi,j,k. (4)

The PointPCA2 algorithm was fully re-implemented in
Rust [20] to generate these descriptors. Rust’s static typing and
ownership-based memory management ensure robustness and

TABLE I: DEFINITION OF DESCRIPTORS.

Descriptor Definition D

G
eo

m
et

ri
c

Error vector e = (ωB
i − ωA

i) rα
Error along axes ϵm = (ωB

i − ωA
i)T · um rβ

Error from origin ϵ = ωF
i rα, rβ

Mean µB = 1
n

∑
j ω

B
j rα, rβ

Variance λF
m = 1

n

∑
j(ω

F
j − µF)2 rδ

Sum of variance ΣF =
∑

m λF
m rδ

Covariance Σ = 1
n

∑
j(ω

A
j − µA) · (ωB

j − µB)T rγ

Omnivariance OF = 3
√∏

m λF
m rδ

Eigenentropy EF = −
∑

m λF
m · log λF

m rδ
Anisotropy AF = (λF

1 − λF
3)/λF

1 rδ
Planarity PF = (λF

2 − λF
3)/λF

1 rδ
Linearity LF = (λF

1 − λF
2)/λF

1 rδ
Scattering SF = λF

3 /λF
1 rδ

Curvature CF = λF
3 /

∑
m λF

m rδ
Parallelity pm = 1− um · vBm –
Angular similarity θm = 1− 2 · arccos(cos(um, vBm))/π –

Te
xt

ur
al

Mean µ̃F = 1
n

∑
j c

F
n,t rδ

Variance g̃F = 1
n

∑
j(c

F
n,t − µ̃F)2 rδ

Sum of variance Σ̃F =
∑

m g̃Fm rδ
Covariance Σ̃ = 1

n

∑
j(c

A
n,t − µ̃A) · (cBn,t − µ̃B)T rγ

Omnivariance ÕF = 3
√∏

m g̃Fm rδ

Entropy H̃F = −
∑

m g̃Fm · log g̃Fm rδ

predictable performance. These features eliminate garbage col-
lection overhead and reduce memory requirements through so-
phisticated memory modeling strategies. Named PointPCA2-
RS, our implementation reconceptualizes sequential processes,
optimizing computational efficiency through parallelism and
data structure modeling while preserving the fundamental al-
gorithmic principles. PointPCA2-RS parallelizes PointPCA2’s
sequential processing, particularly for the computationally
intensive feature extraction.

Both PointPCA2 and PointPCA2-RS comprise four major
stages, namely preprocessing, feature extraction, descriptor
computation, and regression. The preprocessing stage is com-
posed of duplicate merging and neighborhood identification
steps. Duplicate merging, as the name suggests, merges dupli-
cate points by averaging the multiple colors associated with
each point. While PointPCA2 employs a naive brute force
method where it checks every point against all others to
identify duplicates, PointPCA2-RS utilizes a BTreeMap [21]
to map each point to a vector that holds all of its associated
colors (including duplicated).

Most of the computational overhead occurs during the
feature extraction stage. Much of this overhead is due to the
intensive use of NN searches that must be performed. For
each point in the RPC, two neighborhood sets are identified:
the k nearest neighbors (KNNs) within reference itself, and
the KNNs within its distorted version under assessment. This
procedure establishes critical correspondence between local
geometric regions in the RPC and DPC.

PointPCA2 identifies local neighborhoods around each point
in the RPC, accomplished via Matlab’s knnsearch func-
tion. KNN search is inherently computationally intensive, but
PointPCA2’s strategy further intensifies these demands by
precomputing all neighborhoods sequentially and storing two
n×k tensors in memory (where n is the number of points). In
PointPCA2, k is typically set to 81. Consequently, for a RPC

XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

with 1M points, the neighborhood arrays would each contain
81M elements, leading to 162M elements allocated in memory
prior to feature computation.

PointPCA2-RS improves computational efficiency by adopt-
ing Rust’s kd_tree. This references original point arrays
without explicit neighborhood storage, reducing additional
memory overhead from O(nk) to O(n). For the same afore-
mentioned example, the 1M points require only 2M memory
elements. Moreover, the employed PointPCA2-RS construc-
tion process is parallelized, significantly reducing the compu-
tation time required for this step. Next, in parallel, 42 local
features are computed per neighborhood by iterating through
each RPC point to compute the covariance matrix described
in Equation 1. Next, PCA is computed over the covariance
matrix for both RPC and DPC to determine eigenvectors and
establish a local orthonormal basis. From these bases, features
such as the mean, variance, eigenvectors, and covariance of
both geometric and texture data are then computed.

Since each iteration operates independently of the others,
PointPCA2-RS executes iterations in parallel to compute the
feature matrix of 42×n dimensions. Each iteration extracts
neighborhoods from the pre-constructed kd_trees on de-
mand, computes features, stores the results in the feature
matrix, and then releases memory. As RPC typically contain
millions or billions of points, this process is highly effective.

Finally, in the descriptor computation stage, the feature
matrix is processed to produce the descriptors as depicted
in Equation 4. In this stage, the pooling operations convert
the 42 features into a set of 40 descriptors. To perform this
conversion, PointPCA2 maintains in memory a features matrix
of dimensions 42×1M and simultaneously a descriptors matrix
of dimensions 40×1M for 1M points, incurring huge memory
usage. To address this issue, PointPCA2-RS avoids storing
the entire descriptors matrix by computing pooled predictors
directly during spatial metric calculation. As each column of
metrics is computed, it is immediately average-pooled into the
40×1 output vector, significantly reducing memory usage.

III. EXPERIMENTAL RESULTS

The experiments were all performed on an AMD
Ryzen™ Threadripper™ 2950X with 128GB RAM. We con-
ducted experiments on the four PC quality benchmark datasets
to investigate the performance of the proposed method. These
datasets and their attributes are depicted in Table II. To validate
the effectiveness and reliability of the proposed PointPCA2-
RS, we compare it with the original in terms of feature
similarity, spent time, allocated memory, and correlations with
Mean Opinion Score (MOS).

The Kolmogorov–Smirnov test (KST) [22] was used to
assess whether features from PointPCA2 and the proposed
PointPCA2-RS come from the same distribution. For each of
the 40 features generated by the compared methods, a p-value
of 0.05 as the significance level was used to determine whether
the distributions were similar enough. Table III depicts the
KST results. From this table, we can observe that the feature
produces by PointPCA2-RS is statistically comparable with
PointPCA2 for the most of features in D1 (37 out of 40), D2
(27 out of 40), D3 (36 out of 40), and D4 (40 out of 40).

TABLE II: USED POINT CLOUDS QUALITY BENCHMARK DATABASES

DB REF Mnemonic Attributes Distortion SRC PPC

D1 [23] M-PCCD
(APSIPA) Color G-PCC, V-PCC 8 254

D2 [24] BASICS
(ICIP2023) Color, Normals PCC, GPCC-RAHT,

GPCC-Predlift and GEOCNN
75 1494

D3 [25] SJTU-PCQA Color Octree, downsampling, color
and geometry noise

9 378

D4 [26] UnB_PC Color, Normals Octree, JPEG compression 6 60

The comparative temporal analysis was conducted by mea-
suring the time required to extract features for each pair
of RPC and DPC across all datasets. The top row of the
Figure 1 shows these times plotted against the total number
of processed points per pair (i.e., the sum of points in the
reference and evaluated PCs). The blue points correspond
to the times obtained using PointPCA2, while the orange
points represent the times obtained when processing the same
pairs with PointPCA2-RS. The curves in these plots repre-
sent the linear regression lines that best fit the data points.
Based on these curves, it is clear that the proposed method
is significantly more time-efficient than PointPCA2, since
its curve consistently remains asymptotically under that of
PointPCA2. To better quantify the performance gain from
using PointPCA2-RS instead of PointPCA2, we computed the
relative speedup as the following ratio:

Speedup =
Execution Time of PointPCA2

Execution Time of PointPCA2-RS
.

The speedup indicates how many times faster PointPCA2-
RS is compared to the baseline PointPCA2. For instance, a
speedup of 2 means the PointPCA2-RS takes half the time
to extract the features of the same pair of PCs. Since we
measured the speedup per dataset entry, we created a regplot to
depict how PointPCA2-RS is faster than PointPCA2, as shown
in the second row of Figure 1.

Similar to the time performance analysis, we calculated
the memory efficiency ratio by dividing the memory used by
PointPCA2 by the memory used by PointPCA2-RS. A higher
ratio indicates that PointPCA2 consumes more memory than
PointPCA2-RS for the same number of points, while ratio
values below 1 means PointPCA2 is more memory-efficient.
Figure 2 depicts the points and the curves of the compared
methods. Similar to the analyses performed with the time data
shown in Figure 1, Figure 2 presents the amount of memory
consumed (in gigabytes) as a function of the total number of
points in the PCs considered. Figure 2 also shows the memory
saved by using PointPCA2-RS instead of PointPCA2.

Table IV consolidates the results presented in Figures 1
and 2, reporting the average time and memory consumption,
along with the corresponding speedups and relative memory
savings. From this table, the advantage of the proposed method
over the state of the art is clear. In terms of processing time,
the proposed approach achieves speedups of 26.69× on D1
(2,569% faster), 26.86× on D2 (2,586% faster), 19.72× on
D3 (1,872.0% faster), and 29.05× on D4 (2,805.0% faster).
As regards memory savings, the usage of PointPCA2-RS
corresponded to a memory reduction of 8.03× on D1, 20.96×
on D2, 33.45× on D3, and 6.88× on D4.

XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

TABLE III: KOLMOGOROV–SMIRNOV TEST TO CHECK WHETHER POINTPCA2 AND POINTPCA2-RS COME FROM THE SAME DISTRIBUTION.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

D1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
D2 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
D3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗
D4 ✓

TABLE IV: TIME AND MEMORY USAGE OF POINTPCA2 AND POINTPCA2-RS, INCLUDING SPEEDUP AND RELATIVE MEMORY SAVINGS

Attribute Method D1 D2 D3 D4

Time PointPCA2 132.33 ± 35.67 236.70 ± 164.65 135.09 ± 59.23 99.32 ± 9.44
PointPCA2-RS 4.97 ± 1.20 9.69 ± 11.09 7.33 ± 5.61 4.29 ± 6.61
Speedup 26.69 ± 3.62 26.86 ± 4.32 19.72 ± 2.69 29.05 ± 5.49

Memory PointPCA2 2.40 ± 0.66 4.59 ± 3.18 2.42 ± 0.99 1.90 ± 0.18
PointPCA2-RS 0.36 ± 0.15 0.69 ± 0.66 0.28 ± 0.20 0.27 ± 0.05
Memory Saving 8.03 ± 10.60 20.96 ± 43.63 33.45 ± 53.49 6.88 ± 0.84

TABLE V: SROCC PERFORMANCE ON M-PCCD [23], SJTU-PCQA [25] AND WPC [27] DATASETS.

Dataset PointPCA2/RS PointPCA1 PCQM pSSIM BitDance Plane2plane P2Plane MSE P2P MSE PSNR Y

M-PCCD 0.960 0.941 0.940 0.925 0.859 0.847 0.901 0.896 0.798
SJTU-PCQA 0.980 0.890 0.862 0.708 0.748 0.761 0.578 0.612 0.743
WPC 0.910 0.866 0.749 0.465 0.451 0.454 0.452 0.563 0.614

Finally, Table V compares the PointPCA2-RS/PointPCA2
with current state-of-the-art Full-reference (FR) PCQA meth-
ods using the M-PCCD, SJTU-PCQA and WPC datasets. The
performance achieving the highest score for these metrics is
shown in boldface. In other words, based on Table V and
the previous results depicted in Table IV, it is patent that the
proposed PointPCA2-RS achieves the best results in terms of
correlation while maintaining a lightweight algorithm.

IV. CONCLUSIONS

This paper uses a descriptor-based approach to extract
features for supervised-learning-based PCQA metrics. The
proposed method produces a feature set comparable to SOTA
PointPCA2, achieving equivalent correlation performance with
significantly fewer computational resources. Future work will
incorporate additional saliency-based features to enhance al-
gorithm performance and accuracy.

REFERENCES

[1] Alireza Javaheri, Catarina Brites, Fernando Pereira, and João Ascenso.
Improving psnr-based quality metrics performance for point cloud
geometry. In 2020 IEEE international conference on image processing
(ICIP), pages 3438–3442. IEEE, 2020.

[2] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen, and Anthony
Vetro. Geometric distortion metrics for point cloud compression. In
2017 IEEE international conference on image processing (ICIP), pages
3460–3464. IEEE, 2017.

[3] Evangelos Alexiou, Touradj Ebrahimi, Marco V Bernardo, Manuela
Pereira, Antonio Pinheiro, Luis A Da Silva Cruz, Carlos Duarte,
Lovorka Gotal Dmitrovic, Emil Dumic, Dragan Matkovics, et al. Point
cloud subjective evaluation methodology based on 2d rendering. In 2018
Tenth International Conference on Quality of Multimedia Experience
(QoMEX), pages 1–6. IEEE, 2018.

[4] Alireza Javaheri, Catarina Brites, Fernando Pereira, and João Ascenso.
Mahalanobis based point to distribution metric for point cloud geometry
quality evaluation. Signal Processing Letters, 27:1350–1354, 2020.

[5] Pedro Garcia Freitas, Mateus Gonçalves, Johann Homonnai, Rafael
Diniz, and Mylène CQ Farias. On the performance of temporal pooling
methods for quality assessment of dynamic point clouds. In 2022 14th
international conference on quality of Multimedia experience (QoMEX),
pages 1–6. IEEE, 2022.

[6] Pedro Garcia Freitas, Giovani Decido Lucafo, Mateus Gonçalves, Johann
Homonnai, Rafael Diniz, and Mylène CQ Farias. Comparative evalu-
ation of temporal pooling methods for no-reference quality assessment
of dynamic point clouds. In Proceedings of the 1st Workshop on Photo-
realistic Image and Environment Synthesis for Multimedia Experiments,
pages 35–41, 2022.

[7] Pedro Garcia Freitas, Rafael Diniz, and Mylene CQ Farias. Point cloud
quality assessment: unifying projection, geometry, and texture similarity.
The Visual Computer, 39(5):1907–1914, 2023.

[8] Arthur HS Carvalho, Pedro G Freitas, Mateus Gonçalves, Johann
Homonnai, and Mylène CQ Farias. Perception-driven point cloud quality
assessment through projections and deep structure similarity. In 2024
IEEE 26th International Workshop on Multimedia Signal Processing
(MMSP), pages 1–6. IEEE, 2024.

[9] Pedro Garcia Freitas, Welington Y.L. Akamine, and Mylène C.Q. Farias.
No-reference image quality assessment based on statistics of local
ternary pattern. In 2016 Eighth International Conference on Quality
of Multimedia Experience (QoMEX), pages 1–6, 2016.

[10] Pedro Garcia Freitas, Luísa Peixoto da Eira, Samuel Soares Santos, and
Mylène Christine Queiroz de Farias. A referenceless image quality
assessment based on bsif, clbp, lpq, and LCP texture descriptors. In
Image Quality and System Performance XVI, Electronic Imaging 2019,
IQSP, Burlingame, CA, USA, 13-17 January 2019. Society for Imaging
Science and Technology, 2019.

[11] Rafael Diniz, Pedro Garcia Freitas, and Mylène CQ Farias. Towards
a point cloud quality assessment model using local binary patterns.
In 2020 Twelfth International Conference on Quality of Multimedia
Experience (QoMEX), pages 1–6. IEEE, 2020.

[12] Rafael Diniz, Pedro Garcia Freitas, and Mylène CQ Farias. Local
luminance patterns for point cloud quality assessment. In 2020 IEEE
22nd international workshop on Multimedia signal processing (MMSP),
pages 1–6. IEEE, 2020.

[13] Rafael Diniz, Pedro Garcia Freitas, and Mylène Farias. A novel point
cloud quality assessment metric based on perceptual color distance
patterns. Electronic Imaging, 33:1–11, 2021.

[14] Rafael Diniz, Pedro Garcia Freitas, and Mylene CQ Farias. Color and
geometry texture descriptors for point-cloud quality assessment. IEEE
Signal Processing Letters, 28:1150–1154, 2021.

[15] Rafael Diniz, Pedro Garcia Freitas, and Mylene CQ Farias. Point
cloud quality assessment based on geometry-aware texture descriptors.
Computers & Graphics, 103:31–44, 2022.

[16] Evangelos Alexiou, Xuemei Zhou, Irene Viola, and Pablo Cesar. Point-
pca: Point cloud objective quality assessment using pca-based descrip-
tors. Journal on Image and Video Processing, 2024(1):20, 2024.

[17] Xuemei Zhou, Evangelos Alexiou, Irene Viola, and Pablo Cesar. Point-
pca+: A full-reference point cloud quality assessment metric with pca-
based features. Signal Processing: Image Communication, 2025.

XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

1.0 1.5 2.0 2.5 3.0

Total Points 1e6

0

50

100

150

200

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

PointPCA2 PointPCA2-rs

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Total Points 1e7

0

200

400

600

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)
PointPCA2 PointPCA2-rs

1 2 3 4

Total Points 1e6

0

50

100

150

200

250

300

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

PointPCA2 PointPCA2-rs

0.8 1.0 1.2 1.4 1.6

Total Points 1e6

0

20

40

60

80

100

120

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

PointPCA2 PointPCA2-rs

1.0 1.5 2.0 2.5 3.0

Total Points 1e6

0

10

20

30

40

Sp
ee

du
p

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Total Points 1e7

0

10

20

30

40

Sp
ee

du
p

1 2 3 4

Total Points 1e6

0

10

20

30

40

Sp
ee

du
p

0.8 1.0 1.2 1.4 1.6

Total Points 1e6

0

10

20

30

40

Sp
ee

du
p

(a) D1 (b) D2 (c) D3 (d) D4

Fig. 1. Processing time as a function of the number of points (first row), and the corresponding relative speedup as a function of the number of points (second
row). The time taken for extracting the features using PointPCA2 (baseline) and its enhanced algorithm PointPCA-RS (proposed). Speedup is computed as
the time taken by PointPCA2 divided by the processing time of PointPCA2-RS, for each point cloud, as a function of its number of points.

1.0 1.5 2.0 2.5 3.0

Total Points 1e6

0

1

2

3

4

M
em

or
y

U
sa

ge
 (G

B
)

PointPCA2 PointPCA2-rs

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Total Points 1e7

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
em

or
y

U
sa

ge
 (G

B
)

PointPCA2 PointPCA2-rs

1 2 3 4

Total Points 1e6

0

1

2

3

4

5

M
em

or
y

U
sa

ge
 (G

B
)

PointPCA2 PointPCA2-rs

0.8 1.0 1.2 1.4 1.6

Total Points 1e6

0.0

0.5

1.0

1.5

2.0

M
em

or
y

U
sa

ge
 (G

B
)

PointPCA2 PointPCA2-rs

1.0 1.5 2.0 2.5 3.0

Total Points 1e6

0

25

50

75

100

125

150

M
em

or
y

Sa
vi

ng

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Total Points 1e7

0

100

200

300

M
em

or
y

Sa
vi

ng

1 2 3 4

Total Points 1e6

0

50

100

150

200

M
em

or
y

Sa
vi

ng

0.8 1.0 1.2 1.4 1.6

Total Points 1e6

0

2

4

6

8

M
em

or
y

Sa
vi

ng

(a) D1 (b) D2 (c) D3 (d) D4

Fig. 2. Memory consumption depending on the number of points (first row) and relative decrease in RAM usage (second row). The peak of memory usage is
seized as well as the number of points of the processed point clouds using both PointPCA2 and PointPCA-RS. The memory saving is measured by calculating
the ratio of memory used by PointPCA2 to that used by PointPCA2-RS, with a higher ratio indicating more memory consumption.

[18] Rafael Diniz, Pedro Garcia Freitas, and Mylene CQ Farias. Multi-
distance point cloud quality assessment. In 2020 IEEE International
Conference on Image Processing (ICIP), pages 3443–3447. IEEE, 2020.

[19] Evangelos Alexiou and Touradj Ebrahimi. Towards a point cloud
structural similarity metric. In 2020 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW), pages 1–6. IEEE, 2020.

[20] Nicholas D Matsakis and Felix S Klock. The rust language. In
Proceedings of the 2014 ACM SIGAda annual conference on High
integrity language technology, pages 103–104, 2014.

[21] Marcus Müller, Lawrence Benson, and Viktor Leis. B-trees are back:
Engineering fast and pageable node layouts. Proceedings of the ACM
on Management of Data, 3(1):1–26, 2025.

[22] Leo A Goodman. Kolmogorov-smirnov tests for psychological research.
Psychological bulletin, 51(2):160, 1954.

[23] Evangelos Alexiou, Irene Viola, Tomás M. Borges, Tiago A. Fonseca,
Ricardo L. de Queiroz, and Touradj Ebrahimi. A comprehensive study
of the rate-distortion performance in mpeg point cloud compression.

Transactions on Signal and Information Processing, 8:e27, 2019.
[24] Ali Ak, Emin Zerman, Maurice Quach, Aladine Chetouani, Aljosa

Smolic, Giuseppe Valenzise, and Patrick Le Callet. Basics: Broad quality
assessment of static point clouds in a compression scenario. IEEE
Transactions on Multimedia, 26:6730–6742, 2024.

[25] Qi Yang, Hao Chen, Zhan Ma, Yiling Xu, Rongjun Tang, and Jun Sun.
Predicting the perceptual quality of point cloud: A 3d-to-2d projection-
based exploration. Transactions on Multimedia, 23:3877–3891, 2020.

[26] Eric M. Torlig, Evangelos Alexiou, Tiago A. Fonseca, Ricardo L.
de Queiroz, and Touradj Ebrahimi. A novel methodology for quality
assessment of voxelized point clouds. In Andrew G. Tescher, editor,
Applications of Digital Image Processing XLI, volume 10752, page
107520I. International Society for Optics and Photonics, SPIE, 2018.

[27] Qi Liu, Honglei Su, Zhengfang Duanmu, Wentao Liu, and Zhou Wang.
Perceptual quality assessment of colored 3d point clouds. IEEE
Transactions on Visualization and Computer Graphics, pages 1–1, 2022.

