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Predictive control for RIS-aided B5G networks
using Kalman filters

Rafael Marasca Martins, Luis Carlos Mathias, and Taufik Abrao

Abstract— Reconfigurable Intelligent Surfaces (RIS) are a key
enabler for B5G/6G wireless networks, particularly in dense
urban environments, enhancing spectral efficiency through con-
trolled signal propagation. However, accurate User Equipment
(UE) tracking is essential for real-time RIS reconfiguration,
especially in scenarios where the system depends on low-rate,
noisy Global Positioning System (GPS) updates. To address
this, we propose a Kalman filter-based control algorithm that
estimates the UE’s position between GPS samples, allowing the
RIS to optimize received power. Results show that this method
can boost received power fivefold, demonstrating its effectiveness
as a low-complexity solution for real-time beamforming in mobile
scenarios with sparse location data.
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I. INTRODUCTION

One of the greatest challenges in modern communications
within dense urban environments is overcoming multipath
fading, which arises from signal reflections and attenuation
caused by interactions with the surrounding environment, such
as building foundations, metal structures, and other obstacles
[1], [2]. In this context, Intelligent Reflecting Surfaces (RIS)
emerge as a promising enabling technology, as they can
make the propagation environment controllable by passively
and electronically adjusting the phase of reflected signals
[1]-[3]. This capability allows RIS to create constructive or
destructive interference in specific spatial regions, enhancing
signal quality where needed. Another important advantage of
RIS is its ability to mitigate shadowing by creating a virtual
Line-of-Sight (LoS) between the Base Station (BS) and the
User Equipment (UE) [1], [3].

However, a key requirement of Beyond 5G (B5G) and
6G networks is Ultra-Reliable Low-Latency Communication
(URLLC) [3], [4]. This imposes strict constraints on the
control algorithms, which must operate with minimal la-
tency to reduce the overhead during the RIS reconfiguration
phase—particularly the communication delays between the
UE, BS, and RIS. Therefore, minimizing this reconfiguration
overhead is critical for ensuring high Quality of Service (QoS),
especially for mobile users [2], [3].

However, when a precise and high-rate sensing infras-
tructure is not available, the adjustment of the RIS must
rely on low-rate and noisy Global Positioning System (GPS)
measurements of the UE’s position. But, as the wireless
communication channel is intrinsically stochastic and highly
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volatile, mainly due to factors such as weather changes, user
mobility, and the dynamic presence of obstacles [1], the RIS
is unable to accurately reconfigure itself to track the UE’s
position adequately, resulting in degraded beam alignment and
reduced communication performance [2]. This highlights the
need for predictive control strategies capable of estimating the
UE’s trajectory in real time, even with sparse and uncertain
measurements.

Several works, such as [5] and [6], explore Integrated
Sensing and Communications (ISAC) techniques; however,
their applicability can be limited by power, throughput, or
interference constraints [7]. As a complementary direction, [8]
proposes a transformer-based method that fuses camera and
GPS data to predict beam states up to 500 ms in advance,
enhancing received power. Nevertheless, this approach relies
heavily on large volumes of data, which may not always
be practical. Similarly, [9] presents an unsupervised cluster-
ing algorithm to estimate the true vehicle trajectory from
sparse and noisy GPS data. While effective, these machine
learning—based, data-centric solutions depend on substantial
training data, which may limit their deployment in real-world
scenarios.

A promising solution lies in the use of the Kalman filter. By
leveraging past observations and a motion model, the Kalman
filter provides optimal estimates of the system state, making
it particularly well-suited for real-time tracking and prediction
in dynamic environments such as mobile wireless networks
[10]. In this context, the present work proposes a predictive
control algorithm based on Kalman filtering, which uses low-
rate GPS measurements from a mobile UE to estimate its
position between samples. These predictions enable proactive
RIS reconfiguration that compensates for control latency and
anticipates the UE’s movement, ultimately improving received
signal power. This approach aims to maintain high commu-
nication performance while avoiding power loss penalties of
reactive reconfiguration.

II. KALMAN FILTER

The Kalman filter is a recursive algorithm widely used for
estimating the state of dynamic systems. It operates in two
main steps: prediction and update [10], [11].

The prediction step estimates the current system state s; and
its associated uncertainty based on the previous state, assuming
a linear system model with additive Gaussian process noise.
The underlying system dynamics are described by [10]-[12]:

w;_1 ~N(0,Q) (D

where s; is the state at time step ¢, F' is the state transition
matrix, and w;_; is the process noise with covariance matrix

si=Fs; 1 +w; 1,
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Q. Based on this model, the predicted state estimate §; and
its associated error covariance matrix P, is computed as
follows [10]-[12]:

5; =Fs;_ 2
P,=FP, ,FT +Q 3)

where the notation (-) stands for the predicted estimate before
the measurement update, and 7 represents the transpose of a
vector or matrix. The update step is triggered when a new
measurement is available. This step refines the predicted state
using new information. It starts by computing the innovation
covariance matrix S [10]-[12]:

S=HP,H" +R 4)

where H is the observation matrix that maps the predicted
state to the measurement space, and R is the measurement
noise covariance matrix, representing sensor uncertainties.

Next, the Kalman gain acts as a weighting factor that
determines the relative importance of the measurement versus
the prediction. It is denoted by G and can be calculated as
follows [10]-[12]:

G =P,HTS! (5)

The residual vector e;, representing the difference between
the actual UE position measurement r; and the predicted
measurement, is given by [11]:

e =r; — H/S\z (6)
The actual state and its covariance are then updated as

follows [10]-[12]:
s;i =8, + Ge; @)

P, = (I- GH)P; ®)

A. System Model

In this paper, two motion models are considered to describe
the system dynamics: a constant acceleration (CA) model and
a constant velocity (CV) model. Accordingly, the state vectors
for each model are defined as follows:

]T
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where z, y, and z denote the coordinates of the UE; z, v,
and 2 denote the corresponding velocity components; and &,
4, and Z represent the acceleration components (included only
in the CA model).

The Kalman filter’s state vector is initialized using the first
available GPS measurement, under the assumption that the UE
starts from rest. That is, all initial velocities and accelerations
are set to zero at the beginning of the estimation process.

Based on the classical kinematic equations of motion, the
system state can be extrapolated over a time interval At under
the CV or CA assumption. These equations form the basis for
the state transition models employed in this work, which are
derived based on [10], [12].

Constant Acceleration Model: In the CA model, the posi-
tion, the corresponding state transition matrix Fca for the full
9-dimensional state vector is:

1 At A
Foa=I3® |0 1 At (11)
0 0 1

where ® denotes the Kroenecker product.

Constant Velocity Model: In the CV model, the system
assumes no acceleration; therefore, the position changes lin-
early with velocity, and velocity remains constant. Thus, the
corresponding 6-dimensional state transition matrix Fcy is
[12]:

0 1 12)

These transition matrices are used in the prediction step of
the Kalman filter to estimate the next state based on the current
state and the underlying motion model.

1 At
FCV_I3®|: ]

B. Covariance Matrices

Assuming the estimation errors across the z, y, and z
axes are uncorrelated, the initial error covariance matrix P
and process noise covariance matrix Q are structured in a
block-diagonal form.

Error Covariance Matrix: The error covariance matrix P
follows the general definition [11], [12]:

P =E{ss’} (13)

For both the CV and CA models, P is block-diagonal per
axis:

P, 0 0
P=|0 P, 0 (14)
0 0 P,

Here, O denotes a zero matrix of appropriate dimensions,
and each Py (k € {z,vy,2}) is a square matrix of size ¢ X ¢,
where ¢ = 2 for the CV model and ¢ = 3 for the CA model:

Pik Pk ) CV model
|Pick  Piik

P,=< .
Pk Pric Pk
Pir Pii Pii|» CA model
\Pir Pii Pik

The initial covariance matrix is typically initialized with
high variances to reflect uncertainty, especially in velocity and
acceleration states.

Process Noise Covariance Matrix: The process noise co-
variance matrix Q captures the uncertainty introduced by the
system dynamics and is derived by projecting the continuous-
time noise model Q. through the system transition matrix F
[11]:

Q=FQ.F’ (15)

In the constant acceleration model, the process noise is
typically attributed to random perturbations in acceleration,
which propagate into both velocity and position. In contrast,
the constant velocity model assumes that only the velocity
component is affected by noise.
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C. Measurement Model

In the proposed system, each measurement corresponds to
the UE’s Cartesian position relative to the RIS. Therefore,
the measurement matrix H maps the full state vector to
the observed position components. It effectively selects the
position entries (x, y, z) from the state vector while ignoring
the unobserved velocity and acceleration states.

Assuming uncorrelated errors across dimensions, the mea-
surement noise covariance matrix R is:

o2 0 0
R=1|0 05 0 (16)
0 0 o2

where 02, O' , and o2 denote the measurement variances along
each axis.

In the remainder of this paper, we adopt the CA model
as the default state-space formulation for the Kalman filter.
Therefore, unless otherwise specified, all references to Kalman
filter pertain to the CA model.

[II. METHODOLOGY

The system considered in this paper comprises a fixed BS
located at position [100,—100,0] m, a RIS at [0,0,0] m
and a UE allowed to move freely within a defined area.
We assume that, throughout the UE’s trajectory, a physical
obstacle obstructs the LoS path between the BS and the UE
as depicted in Fig. 1. Both the UE and BS are equipped with
isotropic antennas.

To simulate realistic vehicular motion, we employ two
trajectories sourced from real-world GPS datasets. The first
(Trajectory 1) is taken from [13], which contains 10 Hz GPS
samples collected from various cars and drivers operating
on public roads across the United Kingdom, Nigeria, and
France. The second (Trajectory 2) comes from [14], featuring
1 Hz tracking data of South African minibus taxis, capturing
dynamic driving behaviors such as aggressive acceleration.
To enable quasi-continuous system evaluation, these signals
are upsampled to 100 Hz via linear interpolation, which is
sufficient given the relatively smooth nature of the underlying
movements.

In addition to the empirical trajectories, a synthetic scenario
(trajectory 3) is evaluated through a Monte Carlo simulation

with 100 repetitions. Here, the UE follows a simulated path
generated by a random-walk process in acceleration. At each
time step, the position is updated using the kinematic equa-
tions:

a7

ry =Ty 1+ I.'tflAt + O5I’At27
I.'t = I.'t—l + rAt

where the acceleration 1, at each time step is independently
drawn from a Gaussian distribution with zero mean and
variance 0.1 m/s?. Both the initial position and velocity are
assumed to be zero. This formulation enables a wide range of
motion patterns.

The UE’s trajectory is estimated in real time using a Kalman
filter based on a constant acceleration motion model, and a
Kalman filter based on the constant velocity model. These
filters operate with a dual-rate structure: a high-frequency
prediction step and a low-frequency update step. The predic-
tion step is executed every 10 ms, producing rapid estimates
of the UE’s position, velocity, and acceleration, which are
used to continuously adjust the RIS configuration for optimal
signal reflection. Conversely, the update step occurs only when
new GPS data is received, reflecting the sampling rate of the
source. During this step, the filter refines its internal state by
incorporating the new measurement, thereby correcting any
accumulated drift.

For each predicted state, the phase shift that maximizes the
received power at the UE can be determined for each RIS
element as [15]:

£L 0 =mod (ko (|75 .| + |7

).2m)

where |r¥ | and |#X | are the exact distance from the BS and
the estimated dlstance from the UE, respectively, to the (m, n)-
th RIS element. If correctly estimated |7}, |, the phase shifts
obtained by (18) maximize the received power by allowing
total constructive interference at the UE position.

The channel is modeled using a basic path-loss model,
where the received power is given by Eq. 19 [15].

(18)
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In which P, denotes the transmit power, A is the signal
wavelength, and G; and G, represent the transmit and receive
antenna gains, respectively, both assumed to be 1 due to
isotropic radiation. The RIS comprises M vertical and N
horizontal elements. The angles Gm , and 67, . correspond
to the angles of incidence and reflection at the (m n)-th RIS
element, while [r}; | is the exact distance between the UE
and the (m,n)-th RIS element. The radar cross-section of a
unit cell, denoted by o, is given by [15]:

D2\?
(efn n79:n n) =4m <>\> COS2(an,n)
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where D is the periodicity of the elements, which is taken as
A/2 in this work.

IV. NUMERICAL RESULTS

This section compares the performance of the Kalman filter-
based RIS configuration strategy with a naive approach, which
reconfigures the RIS only when a new GPS coordinate is
provided. The comparison is based on the received power at
the UE, evaluated over time and under different sampling rates
(1 Hz, 5 Hz, and 10 Hz). Figures 2, 3, and 4 illustrate the
instantaneous power received at the UE for the three different
employed trajectories (Fig. 4 represents the data from a single
sample of the Monte Carlo simulation). Table I summarizes
each condition’s average power gain (in dB).

TABLE 1
COMPARISON OF POWER GAIN [dB] IN UE FOR DIFFERENT METHODS
AND SAMPLING RATES FOR THREE TRAJECTORIES

. Sampling Rate (Hz)
Trajectory Method 0 S 10Tz
Kalman —0.3290 | —0.3462 | —0.0454
Trajectory 1 | Kalman (CV) | —0.3707 | —0.2875 | —0.2542
Naive —1.5868 | —0.3471 | —0.0841
Kalman —0.3389 | —0.0838 | —0.0438
Trajectory 2 | Kalman (CV) | —0.3372 —0.1013 —0.0533
Naive —0.6102 | —0.1239 | —0.1070
Kalman —0.2341 | —0.0516 | —0.0357
Trajectory 3 | Kalman (CV) | —0.2200 | —0.0408 | —0.0270
Naive —0.3429 | —0.1615 | —0.1644

The results clearly demonstrate that the Kalman filter pro-
vides superior performance compared to the naive method.
For all trajectories and sampling rates, the Kalman-based
approach leads to consistently lower power losses. Notably,
for Trajectory 1 at 1 Hz, the Kalman filter reduces power loss
by nearly 5 times compared to the naive method, highlighting
the significant benefit of using prediction in scenarios with
infrequent updates.

Another consistent trend across all results is the impact of
the sampling rate. As the sampling frequency increases, the
power loss decreases for both methods. This is expected, as
more frequent reconfiguration allows the RIS to better adapt
to the UE’s motion. At lower sampling rates (particularly 1
Hz), both methods suffer due to the longer intervals between
updates. However, the naive approach is more severely af-
fected, since it fully relies on outdated information and does
not attempt to estimate the UE’s position.

In the case of the Kalman filter, the reduced performance
at lower sampling rates arises from two factors: modeling
error, as the motion dynamics are less accurately captured over
longer prediction horizons, and information decay, since the
filter’s predictions become less reliable in the absence of new
measurements. This highlights the importance of both accurate
motion models and timely updates in predictive tracking.

A further insight emerges when comparing the constant ve-
locity Kalman filter to the standard Kalman filter. In scenarios
involving abrupt motion changes or non-linear trajectories,
such as in Trajectory 1, where the UE follows a circular
path, the CV model struggles to maintain accurate tracking.
Because it assumes linear motion with no acceleration, it

cannot adapt to changes in speed or direction, resulting in
systematic tracking errors. Specifically, it tends to lag behind
during turns and overshoot when the UE slows down or
stops. These inaccuracies manifest as fluctuations in received
power, especially at lower sampling rates, where the time
between updates exacerbates the model’s limitations. Overall,
the standard Kalman filter exhibits more stable and reliable
performance in dynamic scenarios.

V. CONCLUSIONS AND NEXT RESEARCH PROJECT

This paper presents a predictive RIS control strategy based
on Kalman filtering to compensate for the limited availability
of high-rate UE location data. In particular, the paper addresses
scenarios where the UE position is obtained from low-rate
GPS updates, a common constraint in real-world deployments.

Through extensive simulations over different trajectories
and sampling rates, it is demonstrated that the Kalman filter
can significantly improve RIS reconfiguration performance
compared to a naive update strategy. The results show up to a
5-fold reduction in average power loss at the UE. The benefit
becomes more pronounced as the sampling interval increases,
highlighting the predictive capability of the Kalman filter in
maintaining signal alignment over longer periods without fresh
measurements.

This work also compared two motion models within the
Kalman filter framework: the standard CA model and the CV
model. The CV model exhibits reduced accuracy during turns
or abrupt motion changes, as it does not account for acceler-
ation. This limitation is particularly evident in Trajectory 1,
where the UE follows a circular path.

Notice that the Kalman filter requires careful tuning of its
process and measurement noise covariance matrices to ensure
satisfactory performance. Poorly chosen parameters can lead
to unstable estimates or degraded tracking accuracy, especially
under varying mobility conditions. Additionally, several other
factors can introduce errors in Kalman filtering, including
its reliance on accurate system modeling, the assumption of
Gaussian noise, and the requirement for linear dynamics—all
of which, when violated, can negatively impact estimation
quality. Indeed, while simplifications made in modeling both
the UE’s movement (CV/CA models) and the radio environ-
ment (basic path-loss, isotropic antennas, ideal RIS) become
the problem tractable and demonstrate the core concept effec-
tively, they mean that the reported performance gains (e.g., "up
to a fivefold improvement") should be seen as an optimistic
upper bound. Real-world deployments will likely diminish
gains due to more erratic UE motion, complex multipath, and
hardware imperfections. Besides, the system’s performance
could degrade substantially due to severe GPS errors (outages,
large outliers common in urban canyons) or practical RIS
limitations (discrete phases, losses, switching times).

The focus on a single UE and specific trajectory types means
that its direct applicability to dense, multi-user scenarios
or highly diverse mobility patterns is not fully established.
Hence, while the core predictive idea is sound, significant
further research would be needed to scale this solution to the
complexity of real B5G/6G deployments.
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Future work should focus on incorporating more realistic
motion models and advanced state estimation techniques, such
as the Interacting Multiple Model Kalman Filter (IMM-KF),
which combines multiple motion models to improve tracking
performance in systems with switching dynamics, or machine
learning-based predictors. In parallel, more sophisticated sce-
narios, channel and RIS models should be considered to better
reflect real-world propagation conditions.
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