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Multi-Level Framework Based on YOLOv11:

Enhancing Accuracy in Similar Class Differentiation
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Abstract— This work proposes a hierarchical approach for ship
classification in optical images, aiming to improve the separation
between classes with high visual similarity. The strategy employs
two stages based on the YOLOv11 architecture, with the first
stage using a generalist detector that groups similar classes to
reduce classification complexity and the second stage applying a
specialized classifier to distinguish between subcategories. Exper-
iments conducted with the InaTechShips dataset demonstrated
that the hierarchical framework increased the mAP from 96.3%
to 98.6% and improved classification accuracy for similar classes
from 83.46% to 91.03%.
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I. INTRODUCTION

The detection of ships in optical images plays a crucial

role in applications such as maritime security, environmental

monitoring, and port logistics [1]. In many of these scenarios,

it is not enough to locate the presence of ships. It is also

necessary to identify their class to enable specific monitoring,

response, or control actions. For example, oil tankers are

monitored more consistently than recreational yachts because

they carry cargo that can cause significantly greater envi-

ronmental impact. However, the presence of visually similar

classes poses substantial challenges, even when using modern

object detection architectures based on convolutional neural

networks (CNNs) [2].

Recent studies have shown that state-of-the-art detection

and classification models still struggle to adequately separate

certain ship categories, highlighting the inherent limitations

of approaches based on a single model [3]. These difficulties

directly impact the reliability of automated surveillance and

maritime traffic analysis systems, particularly in operational

scenarios that demand high precision [4].

Convolutional neural networks have become the primary

tool for object classification and detection tasks due to their

ability to extract multiscale and adaptive representations of

visual patterns [5]. However, even advanced architectures

encounter difficulties when class separation relies on very sub-

tle visual variations. In this context, hierarchical approaches
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emerge as an effective alternative by organizing the decision

process into multiple levels of granularity [6].

By dividing the classification problem into sequential stages,

each focused on subsets of classes or specific features, it is

possible to reduce the complexity faced by each model. This

strategy favors the identification of subtle patterns, mitigates

class overlap, and increases system robustness when dealing

with visual ambiguities. Additionally, the modularity provided

by the hierarchical structure facilitates system adaptation to

new scenarios, allowing the incorporation of additional spe-

cialists without requiring a complete redesign of the original

architecture [7].

To address these limitations, this work proposes a hierarchi-

cal solution based on the YOLOv11 architecture, structured

into two distinct stages. In the first stage, classes with higher

visual similarity are grouped, such as TANKER and OIL

PRODUCTS TANKER in Figure 1, adapted from [3]. In the

second stage, a specialized classifier performs fine-grained

differentiation between the corresponding subcategories. This

modular framework aims to simplify decision-making during

inference and enhance system robustness when handling visu-

ally ambiguous cases [8]. The choice of the TANKER classes

was made due to the high confusion rate between them, as

presented in [3], but this approach can be extended to any

classes with high visual similarity.

This paper is organized as follows. Section II presents

related work. Section III describes the proposed methodology.

Section IV details the experiments and discusses the results.

Finally, Section V concludes the paper and suggests directions

for future research.

II. RELATED WORKS

Classifying visually similar objects remains one of the most

persistent challenges in computer vision, especially in domains

where small visual variations correspond to distinct semantic

categories [9]. Even with modern convolutional neural net-

work architectures, traditional models exhibit limitations when

handling classes that share overlapping visual and contextual

features [2]. For instance, in [3], 68 models are evaluated

for ship classification, and all of them exhibit a similar error

pattern, especially between 2 of the 10 evaluated classes. In

this context, hierarchical structures have been adopted as a

strategy to increase sensitivity and modularize the decision-

making process, reducing the complexity that a single model

would face in distinguishing all classes simultaneously.
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Fig. 1: Examples of the 10 ship classes addressed in this study.

Several studies have explored the benefits of this structure.

The HW-CNN [10] introduced hierarchical loss functions

based on the Wasserstein distance, allowing the model to

prioritize separation between semantically related class groups.

The HD-CNN [11] proposed a two-level classifier architec-

ture that combines an initial generalist stage with specialists

focused on confounding classes, achieving substantial error

reductions in benchmarks such as CIFAR-100 and ImageNet.

Wang and Lu [12] further demonstrated that in tasks such as

handwritten character recognition, hierarchical division into

broad groups followed by specialized classifiers enables the

extraction of structural nuances typically overlooked by flat

models. Complementarily, Tazuddin et al. [13] developed an

automated method for hierarchy construction using confusion

matrices to group visually similar classes based on statistical

error, a particularly effective approach in scenarios involving

small or ambiguous objects.

Hierarchical structures have also shown success in semantic

segmentation tasks. Chen et al. [14] proposed a hybrid model

that combines convolutional networks with Markov Random

Fields (MRFs) to capture spatial relationships across mul-

tiple semantic levels. The system refines predictions across

hierarchical layers through an iterative self-learning module,

increasing spatial consistency between segmented regions.

This method proved robust in complex urban environments

where multiple overlapping classes coexist.

In the maritime domain, adopting hierarchical models is

a relatively recent but promising approach. Zhu et al. [15]

proposed a hierarchical attention-based architecture for ship

detection in SAR images, integrating global and local attention

mechanisms to capture both scene-level context and detailed

ship features. This strategy significantly reduced false pos-

itives in high-noise backgrounds. Similarly, Sun et al. [16]

implemented a multiscale regional feature fusion method to

enhance the distinction between civilian and military ships

in high-resolution SAR data. Although based on different

sensing modalities, both studies highlight the effectiveness of

hierarchical modeling in resolving visual ambiguities in ship

classification tasks.

More recently, the AMEFRN model [17] incorporated mul-

tiscale feature representations and auxiliary attributes into a

hierarchical architecture tailored for fine-grained ship classi-

fication. This approach, evaluated on domain-specific bench-

marks, achieved notable gains in both accuracy and modularity

by enabling the specialization of subcomponents in critical

class subsets.

Despite these contributions, a clear gap remains in applying

such strategies to ship classification in high-resolution optical

imagery, where fine details and visual similarity across classes

pose additional challenges. This work addresses this gap by

proposing a two-stage hierarchical framework based on the

YOLOv11 architecture, which integrates a generalist detector

and a specialized classifier to enhance classification perfor-

mance in visually ambiguous scenarios while maintaining

inference efficiency.

III. METHODOLOGY

The experiments conducted in this work were performed

on a system equipped with an AMD Ryzen 9 5950X 16-

core processor of 3.40 GHz, 128 GB of RAM, and an

NVIDIA RTX 3090 GPU with 24 GB of memory. The

PyTorch library was employed to train and run the models.

The training and validation images were obtained from the

InaTechShips dataset1, which comprises 20,000 optical images

of ships categorized into 10 classes, as shown in Figure 2.

The dataset was split into 15,000 images for training and

5,000 for validation, following a 75–25% distribution. All

images were resized to 640×640 pixels during inference to

ensure consistency across comparisons. To ensure statistical

robustness, the models were trained using 10 repetitions of

stratified hold-out with random shuffling before each training

iteration. The results were reported based on aggregated mean

values.

Four different approaches based on the detector YOLOv11

architecture were evaluated. In the first approach, referred to

as the YOLO Normal model, the network was trained using

the 10 original classes with an image resolution of 640×640

pixels. The second approach, called YOLO with higher res-

olution, used 1280×1280 pixel images during training while

maintaining inference at 640×640, to assess whether higher

input resolution during learning would improve the distinction

of visually similar classes [18]. The third approach, YOLO

with more images, was validated using the same images

as the previous models to ensure a fair comparison, but

doubled the number of training samples for the two most

frequently confused classes, TANKER and OIL PRODUCTS

TANKER. The aim was to investigate whether the statistical

1https://www.github.com/EduardoHT/InaTechShips/
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Fig. 2: Distribution of training and validation samples across the four experimental setups. From left to right: balanced dataset

with uniform class distribution, imbalanced dataset with doubled instances for TANKER and OIL PRODUCTS TANKER,

dataset used in the generalist detector with 9 classes, and dataset used in the specialist classifier with only the 2 classes.

reinforcement of these categories would reduce misclassifica-

tion errors. Finally, the fourth approach proposed a hierarchical

two-stage structure, reorganizing the decision process across

complementary levels.

In the hierarchical approach, the system leverages a two-

level structure, as illustrated in Figure 3. The first level consists

of a YOLOv11 model trained to detect 9 classes, where

the TANKER and OIL PRODUCTS TANKER categories are

merged into a generic TANKER class. Detections correspond-

ing to this generic class are cropped from the original images

and resized to 640×640 pixels. These crops are then passed

to a second model, which reuses the YOLOv11 architecture

as a specialized classifier trained exclusively to distinguish

between the two originally merged subcategories. This second

model performs a binary classification task, enabling more

focused and accurate representation learning for subtle visual

differences.

The YOLOv11 architecture used in the proposed system

comprises three main blocks: the backbone, responsible for

visual feature extraction; the neck, which reorganizes these

features across multiple scales; and the head, which gener-

ates final predictions based on the learned representations.

For detection tasks, this comprehensive structure is essential

for localizing ships of varying sizes and orientations. The

neck facilitates multiscale fusion, enhancing the detection

of small or partially occluded objects, while the head pro-

duces bounding boxes and corresponding class labels. For

classification, YOLOv11 is used in a modified version, re-

ferred to as YOLOv11-cls. This variant retains the backbone

for feature extraction but removes the neck, as multiscale

preservation is unnecessary for categorical decisions on single

instances. The head is simplified into a binary classification
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Fig. 3: Comparison between a) the original YOLOv11-based detection approach using only the detector, and b) the proposed

hierarchical framework combining the YOLOv11 detector with an additional classification module.
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block. Additionally, the Spatial Pyramid Pooling Fast (SPPF)

module, originally positioned at the end of the backbone in

the detection version to summarize multiscale information,

is removed. The Cross-Stage Partial with Spatial Attention

(C2PSA) spatial attention block, already part of the original

architecture, is retained and plays a key role in highlighting

discriminative regions of the image, optimizing fine-grained

classification between visually overlapping categories [19].

This functional separation between generalist detection and

specialized classification represents the core of the proposed

hierarchical strategy. By delegating more complex decisions

to a dedicated and focused module, the system can mitigate

inter-class confusion, particularly between categories with

highly similar visual features. The comparison among the four

approaches enables an isolated analysis of the effects of res-

olution, sample reinforcement, and hierarchical structuring on

overall system performance, providing a detailed assessment

of the key factors that enhance accuracy in the classification

of visually similar ships [20].

The classification accuracy between the TANKER and OIL

PRODUCTS TANKER classes was computed as shown in

Equation 1, which expresses the proportion of correct pre-

dictions over the total number of detections, both correct and

incorrect, restricted to those two classes:

Accuracy =

∑
i∈{T} correcti +

∑
i∈{O} correcti

∑
i∈{T,O} (correcti + incorrecti)

× 100 (1)

where

• i ∈ {T} and i ∈ {O} correspond to the TANKER and

OIL PRODUCTS TANKER classes, respectively

• correcti denotes the number of detections correctly as-

signed to class i

• incorrecti denotes the number of detections belonging to

class i that were misclassified either as the other tanker

class or as one of the remaining eight classes

IV. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of the proposed hierarchical

strategy, four variations of the YOLOv11 architecture were

compared using 10 repetitions of stratified hold-out with

random shuffling before each training. The evaluated models

were: YOLOv11s, YOLOv11s High Resolution, YOLOv11s

Imbalanced (with the number of training samples duplicated

for the TANKER classes), and YOLOv11s Hierarchical, which

incorporates two levels of decision-making. Table I summa-

rizes the architectural statistics of the evaluated models.

TABLE I: Architectural complexity of YOLOv11 models

Model Layers Parameters GFLOPs Classes

YOLOv11s 238 9,416,670 21.3 10
YOLOv11s High Resolution 238 9,416,670 21.3 10
YOLOv11s Imbalanced 238 9,416,670 21.3 10
YOLOv11s Hierarchical (det) 238 9,416,283 21.3 9
YOLOv11s Hierarchical (cls) 112 5,436,690 12.0 2

Table II presents the results for the first detection level of

each model. The first three retain the original set of 10 classes,

while the hierarchical approach groups TANKER and OIL

TABLE II: Detection performance of YOLOv11 models (first

level)

Model Precision Recall mAP@50 Time (ms)

YOLOv11s 0.898 0.946 0.963 ± 0.0084 10.4
YOLOv11s High Resolution 0.894 0.915 0.933 ± 0.0093 10.5
YOLOv11s Imbalanced 0.922 0.920 0.954 ± 0.0113 10.4
YOLOv11s Hierarchical 0.971 0.973 0.986 ± 0.0062 10.3

PRODUCTS TANKER into a single generic class, reducing

the number of categories to 9 at this stage.

The high-resolution training model did not significantly

improve over the baseline, suggesting that training with in-

creased input size alone does not benefit detection at 640×640

inference resolution. The model with the number of training

samples duplicated in critical classes resulted in a slight

precision gain, from 0.898 to 0.922, but the mAP remained

nearly unchanged. In contrast, the hierarchical strategy yielded

improvements across all metrics, with a mAP of 98.6%,

representing a 2.3-point gain over YOLOv11s. The increase

in average inference time by 2.2 ms, due to adding the

classification model at a second level, raised the total inference

time from 10.3 ms to 12.5 ms. This computational overhead

introduced by using two models can be considered acceptable

given the performance gain.

A dedicated evaluation was conducted using 1,000 balanced

samples, 500 images from each class, to assess the distinction

between TANKER and OIL PRODUCTS TANKER. All de-

tection models were applied to this set, and the predictions

corresponding to the two target classes were evaluated either

directly by the single-stage models or at two levels for the

hierarchical approach. The outcomes of this focused evaluation

are presented in Table III.

TABLE III: Classification accuracy for TANKER classes

Model Detections Correct Errors Accuracy (%)

YOLOv11s 955 797 158 83.46
YOLOv11s High Resolution 955 794 161 83.14
YOLOv11s Imbalanced 980 825 155 84.18
YOLOv11s Hierarchical 981 893 25 + 63 91.03

The results indicate that oversampling the critical classes

had only a marginal effect, increasing accuracy from 83.46%

to 84.18%. The hierarchical approach, however, achieved a

significant improvement, reaching 91.03% final accuracy. This

figure accounts for 25 misclassifications at the first level

(where predictions were incorrectly assigned to one of the

remaining 8 classes) and 63 second-level classification errors

between the two merged classes. Separating responsibilities

between levels proved essential in reducing local ambiguities

that single-model approaches could not resolve.

Notably, the hierarchical model already performed better at

the detection stage, even before second-level refinement. This

suggests that merging visually similar categories simplifies

the initial decision space and improves the overall detection

performance.

These findings confirm the benefits of using a modular

decision strategy based on two levels, particularly in scenarios

involving visually ambiguous categories. The proposed struc-

ture enhances class-level discrimination and overall system

robustness, offering a viable solution for maritime monitoring
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scenarios, where classification errors can lead to operational

consequences.

V. CONCLUSION AND FUTURE WORKS

This work presented a hierarchical ship classification strat-

egy for optical images, structured into two levels based on

the YOLOv11 architecture. The system combines a generalist

detector in the first level, where visually similar classes

are merged, with a specialist classifier in the second level,

responsible for refined differentiation between critical subcat-

egories. This modular design reduces classification complexity

and enhances precision when dealing with overlapping visual

patterns.

Four different approaches were compared: the baseline

YOLOv11s model, a version trained with higher-resolution

images, an imbalanced configuration with increased samples

in the most confused classes, and the proposed hierarchical

model. While resolution and oversampling led to marginal

improvements, the hierarchical approach consistently outper-

formed the others, achieving an mAP of 98.6% and 91.03%

classification accuracy for the challenging class pair. Ad-

ditionally, it was observed that detection performance also

improved in the hierarchical version, even before second-level

classification.

The proposed architecture proved effective in resolving vi-

sual ambiguities and maintaining a balanced trade-off between

accuracy and computational cost. Notable gains in robustness

and precision offset the slight increase in inference time.

Future work includes extending the hierarchical structure

to additional low-separability class groups, enabling multi-

level decision hierarchies. Furthermore, the use of model

compression and quantization techniques will be explored

to support deployment on embedded devices. The integra-

tion with complementary sources, such as AIS signals, also

represents a promising direction for monitoring scenarios

involving potential AIS spoofing or going dark events, thereby

enhancing decision reliability. Finally, adopting active learning

strategies could enhance the model’s adaptability in real-world

environments with unlabeled data.
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