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Underserved Communication Scenarios
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Abstract— This work proposes a deep Bi-LSTM for symbol
detection in FTN-GFDM systems. The estimator learns the non-
linear mapping between matched filter outputs and transmitted
symbols, handling ISI and colored noise. The network is trained
offline using synthetically generated data and evaluated over
AWGN and TIFS channels. Results show that the Bi-LSTM
achieves competitive BER performance compared to the SD,
while offering fixed and low complexity during inference, making
it suitable for real-time and resource-constrained applications.
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I. INTRODUCTION

Future sixth generation (6G) mobile networks are expected
to incorporate a dedicated service category targeting funda-
mental connectivity demands in underserved areas [1], [2]. The
Enhanced Remote Area Communications (eRAC) scenario
must not be conceived as a mere downscaled version of urban
6G infrastructure; instead, it requires tailored design consid-
erations that account for the distinct propagation conditions,
low user density, and infrastructure limitations of remote and
rural environments [3], [4].

In this scenario, sub-1 GHz frequency bands are particularly
advantageous due to their favorable propagation characteris-
tics, supporting long-range, non-line-of-sight communication.
However, licensed spectrum in this range is often economically
restrictive, necessitating novel frequency reuse schemes opti-
mized for sparsely populated and geographically challenging
areas. Therefore, the opportunistic use of unused spectrum in
the Ultra High Frequency (UHF)/Very High Frequency (VHF)
television bands, known as TV White Space (TVWS), stands
out as a cost-effective alternative, offering excellent coverage
and penetration capabilities [4].

However, despite their coverage advantages, sub-1 GHz
frequency bands inherently limit the adoption of advanced
technologies such as massive Multiple-Input Multiple-Output
(MIMO) and Ultra-Dense Network (UDN), which are key
enablers of spectral efficiency in urban fifth generation (5G)
and 6G scenarios [5]. At these frequencies, longer wavelengths
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lead to physically larger antenna arrays, reducing spatial mul-
tiplexing gains, while limited bandwidth constrains capacity.
Additionally, low user density and scarce infrastructure make
ultra-dense deployments economically unfeasible in remote
and rural areas. As a result, alternative approaches are required
to enhance spectral efficiency without relying on dense infras-
tructure or large antenna systems [6].

Recent studies have suggested that integrating Faster-than-
Nyquist (FTN) signaling with Generalized Frequency Di-
vision Multiplexing (GFDM) is a promising approach for
this purpose in remote and rural scenarios [6], [7]. FTN
increases symbol rates beyond the Nyquist limit by intro-
ducing controlled Inter-Symbol Interference (ISI), allowing
more data to be transmitted within a given bandwidth [8],
[9]. GFDM, in turn, is a flexible multicarrier modulation
scheme whose configurable structure supports operation in
fragmented spectrum and adaptation to diverse bandwidth and
latency requirements [10]. The combined waveform, known
as FTN-GFDM, reduces the spacing between subsymbols and
subcarriers to increase spectral efficiency, albeit at the cost of
both ISI and Inter-Carrier Interference (ICI) [11]. Nonlinear
detectors, such as Maximum Likelihood (ML), can optimally
mitigate this interference within the Mazo limit, but their
computational complexity is prohibitive for practical systems
[6], [12].

Therefore, this paper proposes the use of a Recurrent Neural
Network (RNN) [13], [14], specifically a Bi-directional Long
Short-Term Memory (Bi-LSTM) [15] network, to model and
mitigate the ISI inherent in the FTN-GFDM scheme. RNNs
are well suited for processing sequential data, as they retain
contextual information through hidden states, enabling the
learning of temporal dependencies. The Bi-LSTM architecture
enhances this capability by processing input sequences in
both forward and backward directions, allowing the network
to capture dependencies from both past and future symbols.
This bidirectional structure improves the model’s ability to
represent complex temporal patterns, leading to more accurate
symbol detection in the presence of ISI [16]. A key advantage
of the proposed neural network-based detection approach is
its fixed and low computational complexity during inference.
Once trained, the Bi-LSTM model performs a constant number
of operations for each input sequence, resulting in predictable
latency and making it well suited for real-time or resource-
constrained applications.

II. FTN-GFDM SYSTEM

Consider a FTN-GFDM system employing Quadrature Am-
plitude Modulation (QAM) modulation, where N = KM
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data symbols are transmitted across K subcarriers and M
subsymbols. The prototype filter g, circularly shifted in both
time and frequency, shapes each symbol. FTN signaling
introduces controlled ISI and ICI by reducing K and M,
which correspond to the subsymbol and subcarrier spacing,
respectively. The time overlapping factor is defined as τ =
S/K, and the frequency overlapping factor as β = P/M,
where τ < 1 and/or β < 1 lead to ISI and ICI, respectively
[12]. Here, S denotes the number of samples per period of the
prototype filter, and P represents the total number of periods.

The transmitted FTN-GFDM signal in discrete-time can be
expressed as

x[ν] =

K−1∑
k=0

M−1∑
m=0

sk,mgk,m[ν], (1)

where sk,m is the data symbol at the k-th subcarrier and m-th
subsymbol, and the time-frequency shifted prototype filter is
defined as

gk,m[ν] =

√
N
N

g [⟨ν −mτS⟩N ] exp

(
j2π

kβ

S
ν

)
, (2)

with ν = [0, 1, 2, . . . ,N − 1], N denoting the total number of
samples, and ⟨·⟩N the modulo-N operation ensuring circular-
ity.

To simplify signal modeling and analysis, the transmission
can be written in matrix form as

x = As, (3)

where x is the transmit signal vector, s is the vectorized data
symbol stream, and A is the modulation matrix composed of
all circularly time-frequency shifted versions of the prototype
filter gk,m, i.e.,

A = [g0,0,g1,0, . . . ,gK−1,0,g0,1, . . . ,gK−1,M−1] . (4)

Assuming the signal passes through a multipath fading
channel represented by matrix H, the received signal is given
by

y = Hx+w, (5)

where w ∼ CN (0, N0I) is the additive white Gaussian noise
vector.

After channel equalization, the demodulator applies a
Matched Filter (MF) operation AH to obtain

r = AHH−1HAs+AHH−1w = Gs+ w̄, (6)

where G = AHA is the interference matrix encap-
sulating both ISI and ICI components. The noise term
w̄ ∼ CN (0, N0(A

H(HHH)−1A)) becomes colored due to
the non-orthogonal nature of FTN signaling.

The condition number of G significantly impacts the
system’s performance. Ill-conditioned matrices degrade the
effectiveness of linear detectors such as Zero-Forcing (ZF)
and Minimum Mean Square Error (MMSE), motivating the
use of nonlinear strategies [6]. Maximum Likelihood Se-
quence Estimation (MLSE) achieves optimal Bit Error Rate
(BER) performance but at prohibitive complexity. Hence,
practical alternatives like Sphere Decoding (SD), Successive

Symbol-by-Symbol Sequence Estimation (SSSSE), and Suc-
cessive Symbol-by-Symbol go-back K Sequence Estimation
(SSSgbKSE) offer a balance between complexity and BER
performance [12].

III. RECURRENT NEURAL NETWORKS

RNNs are a class of neural networks designed to model
sequential data by maintaining a form of internal memory
through recurrent connections [17]. Their architecture intro-
duces temporal dependencies by feeding the hidden state from
the previous time step into the computation of the current state,
thus characterizing them as discrete-time dynamic systems
[18], [13]. Let xl−1

t denotes the input to layer l at time step t,
and hl

t represents the hidden state at the same layer and time
step. The equations governing the forward pass of a standard
RNN layer l are given by [16], [19]

hl
t = ϕ

(
Wl

hhh
l
t−1 +Wl

xhx
l−1
t + bl

h

)
, (7)

yl
t = Wl

hyh
l
t + bl

y, (8)

where ϕ(·) is a nonlinear activation function (typically tanh
or ReLU); Wxh, Whh, and Why are weight matrices corre-
sponding to the input-to-hidden, hidden-to-hidden (recurrent),
and hidden-to-output transformations, respectively; and bl

h and
bl
y are the corresponding bias vectors. The parameters of the

network are shared across time steps, enabling the RNN to
learn temporal patterns and dependencies in the data. This
parameter sharing also allows the network to generalize across
sequence lengths.

Training is commonly performed using the Backpropagation
Through Time (BPTT) algorithm, which extends the standard
backpropagation method to sequential data by unrolling the
network over time [20]. The total gradient of the loss function
with respect to the trainable parameters is computed by
accumulating the contributions from each time step as follows
[19]

∂L
∂θ

=

T∑
t=1

∂Lt

∂θ
. (9)

Here, L denotes the total loss over the input sequence of length
T , Lt is the loss at time step t, and θ represents the set of
trainable parameters of the network, such as weight matrices
and biases.

However, BPTT is prone to the vanishing and exploding
gradient problems when processing long sequences, which can
hinder the learning of long-term dependencies [14], [20]. To
address these limitations, more robust recurrent architectures,
such as the Long Short-Term Memory (LSTM) [21] and the
Gated Recurrent Unit (GRU) [22], were introduced. These
models incorporate gating mechanisms that improve gradient
flow and enable the network to capture temporal dependencies
over longer time spans more effectively.

IV. NEURAL NETWORK-BASED DETECTION FOR
FTN-GFDM SYSTEMS

As previously discussed, symbol detection in FTN-GFDM
systems poses a significant challenge due to the presence of
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ISI, which requires high-complexity nonlinear detectors to
achieve a BER performance close to that of ML detection.
The detection problem can be reformulated to address this
complexity as a supervised regression task, employing a neural
network to capture the temporal dependencies within the
transmitted symbol sequence.

The neural network is trained to learn the nonlinear rela-
tionship between the sequence at the MF output r and the
original transmitted symbols s, addressing both the interfer-
ence pattern, characterized by the matrix G, and the colored
noise resulting from the non-orthogonality of the modulation
matrix A and the channel equalization process.

The network is defined as a function f(r; θ), where θ rep-
resents the set of trainable weights and biases. The parameters
are optimized by minimizing a loss function that quantifies the
discrepancy between the predicted output and the reference
symbol vector, expressed as

min
θ

E [L(s, f(r; θ))] , (10)

where E [·] denotes the expectation operator.

A. Training Dataset Generation

The neural network is trained offline using a synthetically
generated dataset constructed from the FTN-GFDM system
model. Each training sample comprises a randomly generated
symbol vector s(i) and its corresponding received vector r(i),
obtained from the MF output as described in (6). Therefore,
the dataset is defined as

S =
{
(r(i), s(i))

}Ttrain

i=1
, (11)

where Ttrain denotes the total number of training samples. The
neural network is trained to learn the temporal mapping from
r to s, capturing the effects of ISI the correlation introduced
in the noise by channel equalization.

B. Proposed Bi-LSTM Architecture

In the FTN-GFDM system, the estimation of each symbol
must consider interference from both preceding and succeed-
ing symbols within the block. To model such dependencies,
LSTM networks are employed instead of conventional RNNs,
as they provide enhanced capability to retain relevant infor-
mation across long sequences.

A Bi-LSTM architecture can be adopted to improve per-
formance further, allowing the network to process the input
sequence in both forward and backward directions. This bidi-
rectional structure enables the network to exploit the ISI/ICI
pattern within the FTN-GFDM signal, effectively capturing the
mutual influence among overlapping symbols and improving
detection accuracy.

Let r = [r1, r2, . . . , rN ] denote the real-valued input se-
quence, where each rt ∈ R2 contains the real and imaginary
parts of the t-th received sample at the MF output, with
t = 1, 2, . . . , N . This sequence is processed by the Bi-LSTM
network over N time steps, one for each symbol in the block.
At each step t, the LSTM cell generates a hidden state vector
ht ∈ RU , where U denotes the number of hidden units

in the layer. This defines the dimensionality of the hidden
representation used to model interference among symbols
across the block.

At each time step t, the forward and backward layers
produce hidden state vectors

−→
h t and

←−
h t, respectively, which

are concatenated to form the Bi-LSTM output, given by

ht =
[−→
h t,
←−
h t

]
. (12)

Each LSTM cell maintains a hidden state and a cell state,
which are updated at each time step through standard gating
mechanisms involving input, forget, and output gates, as
described in [21].

A second Bi-LSTM layer is stacked on top of the first to
enhance the network’s ability to capture symbol dependencies.
The first layer outputs a sequence of hidden vectors {ht}Nt=1,
which is processed by the second layer to produce a compact
representation of the input sequence.

The output of the second Bi-LSTM layer is then passed
to a fully connected (dense) layer responsible for estimating
the transmitted symbol vector. A hyperbolic tangent activation
function is applied to ensure that the outputs are constrained to
the (−1,+1) interval, which matches the Binary Phase Shift
Keying (BPSK) modulation used. The network output can be
expressed as

ŝ = tanh(Wh+ b), (13)

where W and b denote the weight matrix and bias vector
of the dense layer, respectively, and h is the final hidden
representation produced by the second Bi-LSTM layer.

This architecture allows the network to learn a nonlinear
mapping from the received sequence r to the transmitted
symbols s, handling interference and colored noise caused by
the non-orthogonality of the FTN-GFDM signal.

V. PERFORMANCE EVALUATION

The proposed architecture described in Section IV was
implemented using a two-layer Bi-LSTM network followed
by a fully connected output layer. The input to the network
consists of sequences of N = 25 complex samples, separated
into their real and imaginary components, and organized as
a matrix of shape (25, 2). The network architecture begins
with a Bi-LSTM layer comprising 128 units in each direction,
configured to return a sequence of hidden states across all time
steps. The second Bi-LSTM layer, with 64 units per direction,
processes the output of the previous layer and summarizes
the sequence information into a single feature vector. This
output is then passed to a dense layer with 25 neurons and a
tanh activation function, which produces continuous-valued
symbol estimates in the range (−1, 1), appropriate for the
BPSK constellation.

Figure 1 shows the Bi-LSTM network architecture, includ-
ing the input/output dimensions and the number of trainable
parameters per layer. The parameter count for each Bi-LSTM
layer is given by 8(dh + h2 + h), where d is the input
size per time step and h is the number of hidden units in
each direction. Thus, the proposed network contains a total of
301,721 trainable parameters.
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Fig. 1: Architecture of the proposed Bi-LSTM-based estima-
tor, showing the input/output dimensions and the number of
trainable parameters per layer.

Three datasets were generated using a simulated FTN-
GFDM system with parameters detailed in Table I1. For
each dataset, 80% of the samples were used for training and
20% for validation. The corresponding models were evaluated
using separate test datasets, generated independently from the
training data. Training Signal-to-Noise Ratio (SNR) values
were sampled at 0, 2, 4, 6, 8, 10 dB, while testing covered the
full range from 0 to 10 dB in 1 dB steps. The number of
training and test samples per SNR is presented in Table II.

TABLE I: FTN-GFDM System Parameters Used in Dataset
Generation

Parameters Values
Samples per period of the prototype filter (S) 5
Periods of the prototype filter (P) 4
Total number of samples (N = SP) 20
Time overlap factor (τ ) 0.8
Frequency overlap factor (ϕ) 1
Number of subcarriers per block (K) 5
Number of subsymbols per block (M ) 5
Number of data symbols per block (N = KM ) 25
Prototype filter Dirichlet

TABLE II: Training and Testing Setup for Datasets

Dataset Training Samples per SNR Test Samples per SNR
Dataset 1 5000 10000
Dataset 2 25000 50000
Dataset 3 50000 100000

Training followed a supervised learning approach, in which
each input sample consisted of the MF outputs paired with
the corresponding transmitted symbols, as defined in (11). The
models were trained using the Adam optimizer with an initial
learning rate of 0.001, for 10 epochs and a mini-batch size of
64.

1The datasets are available at: https://github.com/
Mariana-Baracat/ftn-gfdm-datasets

Figures 2a and 2b show the BER performance of the
Bi-LSTM models trained with three different datasets evalu-
ated over Additive White Gaussian Noise (AWGN) and Time-
Invariant Frequency-Selective (TIFS) channels, respectively.
The TIFS channel is characterized by an impulse response
given by h = [1, 0.2, 0.1, 0.04]T. The SD was used as a
performance benchmark for comparison purposes. Although
the SD achieves near-optimal performance for BPSK over
both AWGN and TIFS channels, its computational complexity
depends on the SNR and the number of transmitted symbols
N , and can grow exponentially in the worst case,2 which limits
its applicability in latency-sensitive or resource-constrained
scenarios.

In contrast, the Bi-LSTM detector provides competitive
performance with constant inference-time complexity, since
training is performed offline. This makes it an attractive
alternative for scenarios requiring low computational cost
while maintaining acceptable BER performance. Furthermore,
the Bi-LSTM models exhibited good generalization capability,
even for SNR values not included in the training set.

The results also indicate that the proposed Bi-LSTM neural
network exhibits good generalization capability across differ-
ent channel conditions in the FTN-GFDM signal detection
task, i.e., when training and testing are performed on samples
generated under distinct channel models. Specifically, the
model trained on AWGN samples and tested on equalized
TIFS data achieves better performance than the model trained
and tested on TIFS data.

Moreover, it is observed that the BER performance improves
as the number of training samples per SNR increases. The
model trained with Dataset 1 exhibits inferior performance due
to the limited number of examples available during training. In
addition, this model was evaluated using only 10000 samples
in the testing phase, which may lead to fluctuations in the
BER curve, especially at high SNR values, where the absolute
number of errors tends to be small and statistically less stable.

The models trained with Dataset 2 and Dataset 3 achieved
better performance than the model trained with Dataset 1.
Moreover, the BER curves of the models trained with Dataset 2
and Dataset 3 are very close, indicating that the model reaches
its learning capacity with these dataset sizes. Increasing the
training size to 50000 samples provides only a small perfor-
mance gain, at the cost of increased computational complexity
and training time, which may not be justifiable in resource-
constrained applications.

This trade-off is evident in the training times reported in
Table III, which increase with the number of samples per
SNR. For the AWGN channel, training time increases from
4 to 49 minutes on a system equipped with an AMD Ryzen
53500U processor (2.10 3.70 GHz, 4 cores / 8 threads) as
the dataset size grows from 5000 to 50000 samples. A similar
trend is observed for the TIFS channel. These results highlight
the increased training cost associated with larger datasets,
especially given the small performance improvement beyond
25000 samples.

2Upper and lower bounds on the SD complexity can be found in [12].
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TABLE III: Training Setup for Datasets

AWGN TIFS
Dataset MSE Time MSE Time

1 0.082936 04m21s 0.091955 4m40s
2 0.074907 25m22s 0.081125 26m32s
3 0.075386 45m21s 0.080009 49m50s

(a) BER over AWGN channel.

(b) BER over TIFS channel.

Fig. 2: BER performance of Bi-LSTM models trained with
three different datasets evaluated over different channels.

VI. CONCLUSÕES

This paper proposed a Bi-LSTM-based detector for FTN-
GFDM systems, aiming to address the challenges of symbol
detection under severe ISI conditions. Simulation results over
AWGN and TIFS channels demonstrated that the proposed
architecture achieves competitive BER performance compared
to traditional nonlinear detectors, while offering a fixed and
low computational complexity during inference. Additionally,
the results showed that detection accuracy improves with
larger training datasets; however, performance gains become
marginal beyond a certain dataset size, reflecting the learning
capacity of the proposed model. These results highlight the
potential of Bi-LSTM-based detection as an efficient and scal-

able solution for FTN-GFDM systems operating in constrained
communication scenarios, such as eRAC.
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