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Deep Learning-based Channel Predictor for
RIS-assisted NOMA

Eduardo F. S. L. Henriques, Rafael S. Chaves, and Paulo S. R. Diniz

Abstract— This paper explores the integration of non-
orthogonal multiple access (NOMA) and reconfigurable intelli-
gent surfaces (RIS) as key technologies to address the wireless
communications challenges. NOMA improves spectral efficiency
by enabling resource sharing among multiple users, while RIS
enhances signal quality and coverage with lower energy consump-
tion. However, this integration introduces complexity and non-
linearity in channel estimation. To tackle this, we employ deep
learning (DL) models, specifically convolutional neural networks
(CNN) and long short term memory (LSTM) networks, to
improve channel state prediction. Our main contribution is a new
DL model with additional layers for more accurate magnitude
and phase prediction. Simulations demonstrate that the proposed
model reduces average inference time by 17%, decreases the
number of training parameters by over 35%, and showcases
signal-to-noise ratio (SNR) gains for fixed bit-error rate (BER).

Keywords— NOMA, RIS, Channel Estimation, CNN, LSTM

I. INTRODUCTION

As we approach the transition from fifth generation (5G) to
the forthcoming sixth generation (6G) networks, the telecom-
munications industry is experiencing an unprecedented de-
mand for higher data rates, lower latency, and enhanced
reliability [1], [2]. These demands require innovative solu-
tions to meet the increasing data consumption [3]. Central
to these advancements are non-orthogonal multiple access
(NOMA) and reconfigurable intelligent surfaces (RIS) [4]–
[6]. NOMA, which differs from traditional orthogonal multiple
access (OMA) techniques [7], [8] by enabling multiple users
to share the same communication resources, allowing higher
spectral efficiency (SE). On the other hand, RIS has the
potential to intelligently manipulate the signal propagation to
optimally achieve quality and coverage with reduced energy
usage [9]–[12]. Thus, there is no competition between NOMA
and RIS. Rather, they can be integrated, providing a significant
advantage to NOMA by increasing its throughput performance
through improved signal quality and coverage [4], [13].

The integration of RIS in NOMA communication systems
enhances communication capacity but introduces significant
channel estimation complexity due to the increased number of
channel coefficients and the non-linear interactions between
multiple users and RIS elements [14]. Traditional methods
may struggle to handle this complexity [15], making them
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less effective and computationally expensive. To overcome
these challenges, this work employs advanced deep learning
(DL) techniques [16], using convolutional neural networks
(CNN) [17] for robust feature extraction and long short term
memory (LSTM) [18] networks for effective sequential data
processing. This AI-driven approach aims to improve channel
estimation by capturing both the magnitude and phase of
received signals, thereby enhancing adaptability, data handling
capacity, and reliability in RIS-NOMA systems.

Key contributions of this paper include exploring the syn-
ergy of RIS-NOMA, incorporating phase prediction within
the DL architecture for improved channel estimation accuracy,
introducing reduced-complexity DL architecture with modified
pooling layers to optimize performance, and conducting a
detailed bit-error rate (BER) evaluation with successive inter-
ference cancellation (SIC) technique to validate the model’s
effectiveness in practical applications.

The remainder of the paper is organized as follows: Sec-
tion II describes the downlink transmission for a RIS-assisted
NOMA system. Section III details the proposed DL architec-
ture for channel estimation. In Section IV, simulation results
evaluate the BER over varying signal-to-noise ratio (SNR)
values comparing the proposed channel predictor with the
state-of-the-art. Finally, the conclusion is drawn in Section V.

Notations: Vectors and matrices are represented by boldface
lowercase and uppercase letters, respectively. The notation XT

and XH stand for transpose, and Hermitian operations on
X, respectively. The symbols C, R, R+, and N denote the
sets of complex, real, non-negative real, and natural numbers,
respectively. The set CM×K×L denotes all M×K×L matrices
comprised of complex-valued entries. The symbol CN (m,C)
denotes a circularly symmetric Gaussian distribution with
mean m and covariance matrix C. The symbol E[X] denotes
a the expected value of a random variable X .

II. SYSTEM MODEL

Consider a NOMA system operating in downlink transmis-
sion with a single-antenna base station (BS) aided by a RIS
equipped with L passive reflecting elements and serving M
single-antenna user equipments (UEs) as illustrated in Fig. 1.
The BS transmits the superposed signal x(n), given by

x(n) =

M∑
m=1

√
pmxm(n), (1)

where n ∈ {1, 2, . . . , N} is the time in samples with N ∈
N being the transmission duration, xm(n) ∈ C ⊂ C is the
transmitted signal from a generic constellation, and pm ∈ R+
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Fig. 1: RIS-assisted NOMA downlink transmission with M =
2 users.

is the power allocation coefficient, for the mth UE. Moreover,
we consider E[|xm(n)|2] = 1 and

M∑
m=1

pm = 1. (2)

As depicted in Fig. 1, the line-of-sight (LoS) channel
path between BS and the mth UE is blocked. Moreover, we
consider fixed both BS and RIS, and moving UEs, albeit their
speed is low to avoid Doppler effects. The x(n) is transmitted
through the cascaded channel hm(n), written as

hm(n) =
√
βm(n)gH

m(n)Θg0, (3)

where g0 ∼ CN (ḡ0, IL) is the channel vector between the
BS and RIS, gm(n) ∼ CN (ḡm, IL) is the channel vector
between the RIS and the mth UE, and Θ is the phase shift
matrix denoted by

Θ = Diag
(
ejθ1 , ejθ2 , · · · , ejθL

)
, (4)

with θl ∈ (−π, π) is the phase shift of the lth element.
Additionally, βm(n) is the path loss expressed as

βm(n) =

(
dsr
d0

)−αsr
(
drm(n)

d0

)−αrm

, (5)

where d0 ∈ R+ is the reference distance, αsr ∈ R+ and
dsr ∈ R+ are the environment’s path loss exponent (PLE)
and distance from BS to RIS. αrm and drm(n) are the
environment’s PLE and distance from RIS to the mth UE [19].
In this system, the channel between the BS and RIS varies with
each time sample n, while the channel between the RIS and
each UE is slowly time-variant due to the movement of the
UEs. As both UEs are moving further away from the BS at
a constant speed we can infer that the time-space function of
drm(n) is described by

drm(n) = drm(0) + vmn, (6)

where drm(0) ∈ R+ is the initial position for the mth UE and
vm ∈ R+ is the velocity in m/samples for the mth UE.

The received signal at the mth UE is given by

ym(n) =
√
ρhm(n)x(n) + wm(n), (7)

where ρ ∈ R+ is the SNR and wm(n) ∼ CN (0, 1) is the
additive white Gaussian noise (AWGN).

At the weaker UE’s single-antenna receiver, the UEs are
ordered by signal power strength, enabling the receiver to
prioritize and remove stronger signals using SIC. This process
decodes and subtracts stronger user signals from the received
superposed signal, making it easier to decode the weaker UE’s
signal by progressively eliminating interference. The weaker
UE always decodes the stronger signal first, cancels it from
the received signal, and then decodes its transmission, while
the stronger UE directly decodes its signal without requiring
SIC. Therefore, examining (7), the equation for ym(n) when
performing SIC at UEm is

ym,xm
(n) = ym(n)−

M∑
i=m+1

√
ρĥm(n)

√
pix̂i(n), (8)

where ĥm(n) ∈ C is the estimated channel for the UEm.
The joint use of RIS and NOMA systems improves signal

quality and coverage. Yet, the substantial number of elements
in RIS introduces complexity in channel estimation, thereby
limiting the efficacy of traditional methods. This creates an
opportunity for the application of DL-based approaches to
efficiently estimate channel pilotless [15], [20].

III. CHANNEL PREDICTOR

A. Problem Formulation

As presented in (8), channel state information (CSI) is
necessary to perform SIC at the mth UE. In this paper, we
propose a DL approach to gather the CSI by predicting the
channel in future time steps. The estimated channel in this
work is denoted by partial CSI and the perfect channel is
called full CSI. Specifically, the estimated channel is given by

ĥm(n) = f(ym), (9)

where f(·) is a nonlinear function modeled by the proposed
DL model. Advanced DL approaches, such as CNN and
LSTM, address the estimation of nonlinear functions by of-
fering robust feature extraction and sequential data process-
ing, respectively [18], [21]–[23], enabling more accurate and
adaptive channel prediction to optimize RIS-NOMA system’s
performance.

B. Dataset and Feature Extraction

The dataset used to train the proposed architecture com-
prises two main quantities, the matrices Y and H, containing
the received signals and cascaded channels for the UEs,
respectively. The proposed model aims to predict the CSI for
adaptability in dynamic conditions by incorporating magnitude
and phase as the output of the DL model, unlike in [24], which
only uses magnitude as output. This time-series prediction
uses previous data points of Y as inputs in a sliding window
manner to forecast future values of H.

The received signal at each UE can be written as

ym(n) = [ym(n+ ti− 1) ym(n+ ti− 2) · · · ym(n)]T, (10)
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Fig. 2: The CNN-LSTM model architecture visualization.

where ti ∈ N is the input time steps. The vector ym(n)
predicts the CSI hm(n + to) with to ∈ N being the output
time steps. Considering both users, we create the coordinate
point (Yc(n),hc(n)), where Yc(n) = [y1(n) · · · ym(n)] is
the input data and hc(n) = [h1(n+ to) · · · hm(n+ to)] is the
target. In this formulation, the N time steps cannot be used
because the first ti−1 samples lack enough prior data, and the
last few samples lack future output data. Thus, we used the
variable N ′ = N − ti − to + 1 to represent the total number
of samples in the dataset.

Since ym(n) and hm(n + to) are complex numbers, we
separate the phase and magnitude into different dimensions
for compatibility with conventional DL models. Thus, Yc(n)
and hc(n) are transformed into tensors Y(n) and H(n), where
the first slabs are Y1(n) = |Yc(n)| and H1(n) = |hc(n)|, and
the second slabs are Y2(n) = ∠Yc(n) and H2(n) = ∠hc(n).
The dataset is given by

D = {(Y(1),H(1)), · · · , (Y(N ′),H(N ′))}, (11)

where Y(n) ∈ Rti×M×2 and H(n) ∈ R1×M×2, account
for the time samples used for prediction, number of users,
and magnitude–phase, respectively. In this paper, the proposed
model uses ti = 20 time steps to predict to = 1.

C. Proposed Architecture

The DL architecture in [24] uses two Conv2D layers for fea-
ture mapping, followed by a max-pooling layer to reduce com-
plexity and noise sensitivity. On the other hand, the proposed
model introduces a max-pooling layer after the first Conv2D
operation, using different pool sizes to improve feature extrac-
tion and reduce the computational burden. This dual-pooling
approach improves feature recognition and reduces the model’s
computational burden. The CNN, with 64 filters, a (3, 1)
kernel, and rectified linear unit activation, outputs to the LSTM
module, which captures temporal dependencies for accurate
channel estimation. A RepeatVector layer adjusts the output
for LSTM input, and two LSTM layers with 16 memory cells
process the data. The Time Distributed Dense layer refines the
sequence, and the model is trained using the Adam optimizer
with mean squared error (MSE) as the loss function. The
convolutional layers in particular were achieved by a grid
search combination for Ffilter ∈ {4, 8, 16, 64} considering
both the training loss and accuracy results. Figure 2 depicts
the proposed model operational layers for M = 2.

D. Computational Complexity

The proposed model input does not scale with the number
of RIS elements, since the CNN-LSTM architecture input does
not depend on the number of RIS elements L. The architecture
complexity would not be affected by an infinite number of
RIS elements. The number of RIS elements only affects the
cascade channel distribution due to (3), demanding retraining
for RIS with different element numbers. On the other hand,
the complexity would increase with the number of time steps
ti and the number of users M . Increasing ti would increase
the size of the input layer, and increasing M would potentially
increase the size of all convolutional layers and the number
of layers in the model. However, an increased ti potentially
leads to better prediction since the model would have more
data available to provide an output. Furthermore, it is worth
mentioning that with different parameters, it would be possible
to design a completely different architecture with a better
trade-off in terms of performance and complexity.

IV. SIMULATION RESULTS

To evaluate the DL model, we used key performance
metrics as in [24], including normalized root mean squared
error (NRMSE), mean absolute scaled error (MASE), mean
absolute percentage error (MAPE), root mean squared error
(RMSE), mean absolute error (MAE), and R-squared score
(R² score). All the codes used in this paper are available on
GitHub.1 We considered a BS aided by a RIS with L =
20 elements transmitting 4-quadrature amplitude modulation
(QAM) symbols to M = 2 UEs during N = 20000 samples.
The RIS is dsr = 150 m apart from the BS, the UEs are
initially dr1(0) = 30 m, and dr2(0) = 40 m from the RIS,
moving away from it at a speed of v = 0.01 m/sample, and
the reference distance is d0 = 20 m. Channels are modeled
as g0(n) ∼ CN (1, 1), g1(n) ∼ CN (4, 1), and g2(n) ∼
CN (3, 1). The system has an amplitude reflection coefficient
αm = 1, the phase shift θl = 0.01π + (l − 1)0.01π/L as
employed in [24], and PLE coefficients of 2.2 for all links. The
SNR is ρ ∈ {−10,−5, 0, · · · , 35} dB and power allocation
factors are p1 = 0.3 and p2 = 0.7. Additionally, we split
the data sequentially, using a ratio of 0.8:0.2 for training
and testing. Table I summarizes the parameters used in the
simulation.

Fig. 3 shows the magnitude and phase of the cascaded chan-
nel for UE1 over time in samples, highlighting the DL model’s

1https://github.com/eduardo-henriques/Deep-Learning-based-Channel-Pre
dictor-for-RIS-assisted-NOMA-Communication-Systems

https://github.com/eduardo-henriques/Deep-Learning-based-Channel-Predictor-for-RIS-assisted-NOMA-Communication-Systems
https://github.com/eduardo-henriques/Deep-Learning-based-Channel-Predictor-for-RIS-assisted-NOMA-Communication-Systems
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TABLE I: Two-user scenario dataset parameters.

Parameter Description
N = 20000 Number of time steps
M = 2 Number of users
L = 20 Number of RIS elements

v = 0.01 m/time step Speed of users
ρ ∈ {−10,−5, · · · , 35} dB SNR

g0 ∼ CN (1, 1) Channel between BS and RIS
g1 ∼ CN (4, 1) Channel between BS and UE1

g2 ∼ CN (3, 1) Channel between BS and UE2

d0 = 20 m Reference distance
dsr = 150 m Distance from BS to RIS
ds1(0) = 30 m Distance from RIS to UE1

ds2(0) = 40 m Distance from RIS to UE2

αm = 1 Amplitude reflection coefficient
θl = 0.01π + (l − 1)0.01π/L RIS phase shift

αr1 = 2.2 PLE from RIS to UE1

αr2 = 2.2 PLE from RIS to UE2

αsr = 2.2 PLE from BS to RIS
p1 = 0.3 Power allocation for UE1

p2 = 0.7 Power allocation for UE2

ti = 20 Number of input time steps
to = 1 Number of output time steps

predictive performance for ρ = 30 dB. In Fig. 3a, the true
cascaded channel magnitude and the model’s prediction are
compared, with a zoomed section that showcases the model’s
performance on unseen data and its ability to capture the
channel’s magnitude. Fig. 3b illustrates the phase prediction,
where initial discrepancies in prediction decrease as learning
progresses. These results highlight the challenges and potential
of using deep learning for accurate channel modeling in RIS-
aided NOMA systems. Similar results were observed for UE2

under the same conditions, indicating the model’s consistent
performance in predicting both magnitude and phase in RIS-
NOMA systems.
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Fig. 3: UE1’s cascaded channel prediction for SNR = 30 dB.

TABLE II: Performance metrics of different DL models for
ρ = 30 dB.

Metrics Model proposed in [24] Proposed model
NRMSE 0.098 0.096
MASE 0.063 0.057
MAPE 468.485 163.640
R² score 0.910 0.925
RMSE 0.089 0.077
MAE 0.073 0.063
Inference time 0.409 ms 0.338 ms
Trainable parameters 57028 (222.77 KB) 36548 (142.77 KB)

Fig. 4 compares the BER performance for two UEs under
partial and full CSI knowledge across SNR values, where full
CSI knowledge is knowledge of the perfect channel and partial
CSI knowledge is knowledge of the predicted channel. The
BER was calculated for each time step and averaged over the
test dataset for each SNR. While full CSI knowledge provides
lower BER, the performance with partial CSI obtained from
the proposed architecture remains close, especially at low-
SNR regime. This demonstrates the model’s effectiveness
in predicting critical channel characteristics, maintaining a
competitive BER even with limited channel information.
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Fig. 4: BER versus SNR for 100 epochs.

We compared the proposed DL-based channel predictor
to the state-of-the-art model from [24], referred to as the
“baseline model”. As shown in Table II, the proposed model
outperforms the baseline across all the evaluated metrics,
demonstrating better accuracy and fewer errors. Moreover, it
is worth noting that the proposed model reduces the average
inference time and trainable parameters by 17% and 35.9%,
respectively. This result confirms that the proposed model is
more efficient in computation and memory, which is critical
for real-time processing. Furthermore, in Fig. 5, the proposed
model achieved at least the same BER compared to the
baseline at low-SNR regime for both UEs. On the other
hand, at high-SNR regime, UE1 achieved a BER of 10−3 at
ρ ∼ 30 dB by using the proposed model, yielding a SNR gain
of ∼ 5 dB over the baseline for the same BER.
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Fig. 5: BER versus SNR for different models.

V. CONCLUSION

This paper provided a comprehensive analysis on the in-
tegration of NOMA and RIS, highlighting the transformative
potential of DL solutions to estimate the channel of a wireless
system. The proposed DL-based channel predictor outper-
formed the baseline model, our main goal, and successfully
replicated the time-series patterns of channel magnitude and
phase for both UEs. These results, along with the promising
BER performance over SNR, demonstrate the robustness and
reliability of the predictor for a single antenna RIS-NOMA
downlink system.

Future work shall focus on further optimizing the DL
model by reducing its complexity, possibly through fewer
LSTM layers or improved hyperparameter tuning, and refining
the dataset generation process. Furthermore, it shall explore
more advanced modulation schemes, incorporating realistic
scenarios such as higher UEs speeds with Doppler effects,
including direct BS-to-UE paths, and adapting the architec-
ture to multiple-input multiple-output (MIMO) environments
with multiple UEs and antennas. Additionally, developing
decentralized predictors for individual UEs and extending
the channel prediction framework to RIS-NOMA systems
in uplink transmission would provide valuable insights and
broaden the applicability to emerging internet of things (IoT)
and sensing applications.
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