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Abstract— Radio propagation prediction is a fundamental
stage in mobile communication systems design and improvement.
That prediction is based on propagation models often developed
from empirical measurements. That is a complex process, which
has recently been boosted by several machine learning and
artificial intelligence tools. Among those techniques, symbolic
regression is an interpretable model that provides analytical
equations based on a database. This work presents a prelimi-
nary work that applies symbolic regression techniques to find
analytical equations to model mobile radio propagation channels
based on measurements made in the urban area of Rio de Janeiro
city in Brazil.
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I. INTRODUCTION

Mobile communications have become one of the most
important tools for human activities in our times. They allow
us to be connected everywhere we go and expand our personal
experiences, social interactions and business. Consequently,
this technology is developing really fast with expressive
changes after each generation, which has sought better data
rates and low latency at the expense of higher frequencies and
wider bandwidths. The 5G is the current mobile generation
and utilizes FR1 and FR2 as two different spectrum bands. The
FR1 (410 MHz-7.125 GHz) is also called sub-6 GHz spectrum
and allows a broader coverge area and the operation of the
conventional cellular lines. The FR2 (24.25 GHz-52.6 GHz)
is known as millimeter wave and offers high data rates in small
areas. On the other hand, the future next generation is expected
to reach even higher frequencies with broader bandwidths and
higher communication speed up to 100-1000 times the one
reached by the 5G [1].

A move up in the spectrum after every generation makes
the new technologies to face new propagation characteristics
and challenges, and new analyses are required to characterize
mobile radio propagation channels towards future applications.
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However, those channels are complex to analyze as a conse-
quence of the movement, infinity of obstacles, and many un-
known environmental aspects especially in urban areas. Then,
propagation is often observed as a stochastic process, and the
development of channel models for predictions becomes very
useful. That modeling results in an easier description of the
propagation phenomenon and simplifies the understanding of
those mobile communication medium. Specifically, empirical
models are based on several measurements made in the place
of interest and represents how the radio wave statistically
behaves in that specific scenario [2].

Free Space, Okumura, Hata, COST 231, and Longley-Rice
are some well known models. Recently, the 3rd generation
partnership project (3GPP) has worked for the standardization
of channel models regarding the development of the future
6G mobile communication systems. For instance, the 3GPP
technical report (TR) 38.901 contains the 5G channel model
for frequencies between 0.5 and 100 GHz. WINNER is also
a standard channel model widely used for mobile commu-
nication systems design. No specific model is suitable for
all situations and might demand adjustments. Lately, machine
learning (ML)-based artificial intelligence (AI) has become
an important tool for radio propagation modeling and the
next mobile geration development. Besides it is flexible and
accurate, it can learn and offer insights from measured data
that is not possible with conventional methods, especially for
complex environments [3].

In that perspective, the paper [4] presents a ML path
loss prediction improvement and impulsive noise removal for
measurements in 2.4 GHz in a public square with vegetation.
The least RMSE found was 0.39 dB. On the other hand,
deep learning was used to predict radio propagation behavior
from images of the receiver area in [5]. The research in [6]
was able to find an accurate model to predict radio power in
urban area regarding its buildings, terrain and other obstacles
with graph neural network. The work [7] proposes to improve
prediction accuracy in path loss models and apply Probabilistic
ML by means of images or tabular data. Finally, a generative
adversarial network is utilized to produce a high resolution
received signal strength map from one of lower resolution
obtained from ray-tracing in [8].

Although all of those papers present a promising result,
they count on non-interpretable models. Otherwise, a model
is interpretable if the connection between its input and output
can be logically expressed in a concise way with mathematical
equations. One example of interpretable model is the sym-
bolic regression: a machine learning-based regression method,
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which is able to generate an analytical equation to express an
input data set. The work in [9] applied symbolic regression to
find new equations to fit Okumura model curves. Similarly, the
paper [10] expressed the ITU-R P.1546-6 propagation curves
into analytical equations also provided by symbolic regression.
Despite the next generation of mobile communication systems
is expected to be structered in millimeter-wave pico-cells at
24-28 GHz bands for high data rates, micro-cells at sub-6-
GHz frequency bands (700 MHz, 2.5 GHz, and 3.5 GHz)
may overlap the smaller cells for wide coverage. Based on
those approaches and frequency bands, this paper presents
an analytical equation by symbolic regression to model urban
mobile radio propagation in 750 MHz. The reference database
in this work is no longer graphical curves as in the mentioned
papers, but it is now made of real measurements in the urban
area of Rio de Janeiro city.

II. SYMBOLIC REGRESSION

Symbolic regression (SR) is an effective way of determin-
ing mathematical equations in data sets accurately through
machine learning methods using analytical regression. Un-
like other conventional methods such as Machine Learning
(ML) and Deep Learning (DL), with SR it is possible to
find mathematical expressions that can efficiently describe
data sets. Conventional methods such as linear or quadratic
regression have limitations regarding the necessary manual
adjustments of the expression coefficients, while symbolic
regression automatically performs the adjustments [11].

The construction of symbolic regression models, which
is commonly used in evolutionary codes utilizing artificial
intelligence, uses the creation of tree-like structures using
primitive functions such as '+, ’-’, ’*’ ’/’) and terminal nodes.
This process aims to identify the appropriate number of nodes
and terminals to provide the best fit for that specific data set,
resulting in an equation. All possible combinations between
primitive functions and nodes are tested using geometric
progression to assign the best values. Note that this search
takes place in a domain that is, in theory, unlimited and
includes all available mathematical operators and constants.

SR starts the process by randomly generating equations
with a predefined number of individuals and population size.
The first equations tend to have a lower potential than the
next ones. As the algorithm evolves, new equations with
better performance will emerge as the average error tends
to decrease. The genetic programming process is completed
at a predetermined point and generates the final equation.
Completion can occur for various reasons such as reaching the
maximum number of iterations, obtaining an equation with an
error lower than a predefined value (e.g. 0.01). It is important
to mention that equations of low complexity can fail, while
those of high complexity can suffer from overfitting [12].

III. SETTINGS AND PROCEDURES
A. Database

Different from similar works based on curves, this research
work is based on mobile radio measurements at 750 MHz
made in the urban area of Rio de Janeiro city [13]. A

continuous-wave (CW) signal was transmitted in vertical po-
larization by an Arronia HyperLOG 60100 antenna, and a RFS
I-ATO1-380/6000 H-plane omnidirectional antenna was used
in the receptor. A low-noise amplifier was applied. The system
parameters can be seen in Table I. That experimental database
contains received signal level captured in two different routes
georeferenced by GPS. The route 1 was made around Rodrigo
de Freitas lagoon and is represented by the green line in
Fig. 1. The route 2 was made in Leblon neighborhood and
is represented by the blue line in Fig. 1. The red line in Fig. 1
represents stretches affected by surrounding vegetation in both
routes. More details about that radio measurement campaign
can be found in [14].

Fig. 1. Map with the mobile measurement routes in the urban area of Rio de
Janeiro: route 1 in green line, route 2 in blue line, and red line for stretches
affected by surrounding vegetation in both routes [14].

TABLE I
LINK BUDGET OF THE MEASUREMENT SYSTEM IN 750 MHz [14].

[ Parameter [ value |
Transmitted power 10 dBm
TX antenna gain 5 dBi
RX antenna gain 1 dBi
Combined amplification 40 dB
Losses (splitter, cables, etc.) -7 dB
Noise floor -120 dBm
Overall dynamic range 169 dB

B. Symbolic Regression Settings

The symbolic regression was used and configured to manip-
ulate the data from the Rio de Janeiro measurement campaign
for routes 1 and 2. It was trained to identify and extract from
the database equations capable of representing path loss (PL)
as a function of Hp, (height of the transmitting antenna) and
d (distance between transmitter and receiver).

The algorithm was configured so that the network was
trained with 70% of the data randomly selected, and the other
30% were used for validation and testing. The SR was set to
begin its search with 100 populations, each consisting of a
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maximum of 50 individuals, and a maximum limit of 1,000
interactions between populations. This initial objective aims
to balance the exploration of the search space with the com-
putational demands, which is an important step in optimizing
the hyper parameters and identifying the parameters with the
greatest impact on the model’s performance.

It was observed that for the model to converge and reduce
the Mean Squared Error (MSE) while avoiding overfitting (i.e.,
when the model excessively adapts to the training dataset and
fails to generalize to new data), the population size of the
genetic algorithm should exceed 25 but not 50, with less than
1,500 iterations. The equation of the proposed model was
defined based on the Root Mean Squared Error (RMSE) values
and minimum possible complexity.

IV. RESULTS

The database used in [13] had to be adjusted due to the
fast fading found in all the routes and their samples. In order
to smooth the curves under these effects and improve the
modeling of the signals, the moving average (MA) technique
with a window of 50 samples was used. This filter is able
to reduce the rapid variations in the signals, preserving long-
term trends, and making easier to recognize more consistent
patterns for the symbolic regression stage.

Among all the equations provided by the symbolic regres-
sion, the Equation 1 was chosen according to what is expected
from propagation models such as log-distance behavior and
RMSE (root mean square error) acceptable values, once large-
scale path loss models often have terms such as logio(d),
log10(f), (where d is the propagation distance and f the signal
frequency), transmission (Hr,) and reception (H ;) heights,
and mean obstruction height. Thus, the Equation 1 provides
physical insights about the radio channel in those scenarios
in a simple way. Figure 2 displays the comparison among
symbolic regression, Hata and Alpha-Beta models for route 1,
and Figure 3 displays the same comparison for route 2. The
measured path loss and its moving average with a 50 samples
window can be seen on the background in both Figures.

The symbolic regression and the Alpha-Beta models pre-
sented a similar RMSE approximately 9 dB lower than Hata
model error. In other words, symbolic regression method was
significantly more accurate than Hata as it can be seen in
Table II for both route 1 and 2. The SR model was visually an
offset of Hata diagram in both routes towards better precision.
Therefore, those preliminary results on symbolic regression
with real measurement data showed the promising potential
of this technique in radio propagation prediction.

PL(d) = (54.276 — 0.37872Hr,) x logio(d), (1)

where d is the propagation distance and Hr, is the TX antenna
height.

V. CONCLUSION

Radio propagation modeling is an important step in the
development of wireless and mobile communication systems.
No model is universal. Some of them need adjustments and
work for specific scenarios and frequencies. There are several
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Fig. 2. The figure shows measured path loss for route 1, moving average of
measured path loss, and predicted path loss using the SR equation, Hata and
Alpha-Beta models.
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Fig. 3. The figure shows measured path loss for route 2, moving average of
measured path loss, and predicted path loss using the SR equation, Hata and
Alpha-Beta models..

models, but the constant move up in the spectrum requires
new analyses. Machine learning and artificial intelligence
have become important resources for radio prediction. In
that perspective, symbolic regression is a powerful tool to
provide analytical equations from known diagrams and mea-
sured databases. This preliminary work showed that symbolic
regression seems to be a promising tool for radio system
analysis, improvement, and design. In short, this paper points
out that symbolic regression is able to produce results with
significant accuracy in comparison to well known models.
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