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BLE-Based AoA Estimation Using a Sliding
Window Median Filter to Remove Outliers
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Abstract— We propose a method to enhance Bluetooth Low En-
ergy (BLE) angle of arrival (AoA) estimation using the multiple
signal classification (MUSIC) algorithm as a base estimator. In
order to identify and remove outliers that jeopardize the accuracy
performance, the proposed algorithm employs a sliding window
median filter, which is compared to an adjustable threshold.
Experiments with a 4 × 4 uniform rectangular array receiving
signals from three BLE tags show that the proposed method
reduces the root mean squared error by 54.9% compared to
traditional MUSIC. Furthermore, the probability of achieving
measurement errors below 5◦ increases from 77% to 83% with
the proposed scheme, improving the AoA accuracy.

Keywords— Angle of Arrival, Moving Median Filter, MUSIC
algorithm.

I. INTRODUCTION

The relevance of the Internet of Things (IoT) continues to
grow, leading to widespread recognition of its potential in both
industry and among technology consumers, with the number
of IoT devices and their associated market value continuing to
rise significantly. Among different applications, several require
higher accuracy in indoor positioning. For instance, tracking
and localization for the industry, as well as fall detection
systems for elderly people, depend on enhanced accuracy and
good indoor positioning mechanisms [1]. Indoor positioning
can be achieved by means of fingerprinting, multilateration,
and triangulation, among others [2]. Fingerprinting techniques
require a device-based calibration phase to map the received
signal strength indicator (RSSI) in a given environment.
Multilateration methods use the estimated distance of the
device, while triangulation usually employs the angle of arrival
(AoA) to estimate positioning. As a result, indoor positioning
accuracy depends on specific metrics such as RSSI, AoA,
channel state information (CSI), time of flight (ToF), or
channel impulse response (CIR).

Nevertheless, CIR and CSI are not readily available on
commercial devices. RSSI, although available on most de-
vices, is susceptible to multipath effects and interference.
ToF requires precise synchronization between the transmitter
and receiver, with localization errors increasing in non-line-
of-sight conditions. Meanwhile, AoA can provide accurate
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estimations if the far-field and good line-of-sight conditions
between the transmitter and receiver are satisfied. Thus, even
though its accuracy decreases with the distance, AoA shows
great potential for providing higher accuracy and faster esti-
mations in indoor positioning, while it is widely employed in
indoor localization and positioning systems within the IoT [3].

Localization technologies based on WiFi, ultra-wideband,
and Bluetooth commonly employ the AoA method. The
Bluetooth Low Energy (BLE) 5.1 specification introduced
the constant tone extension (CTE), which is appended to the
ordinary BLE packet in order to allow for AoA estimation [4].
As a result, an increasing use of BLE technology is observed
in the recent literature [5]–[9]. For instance, the work in [5]
builds a system topology and algorithms for BLE-based in-
door localization. Experiments were conducted in an anechoic
chamber and further expanded to both indoor and outdoor
areas. The main goal of the paper was to experimentally obtain
the localization accuracy, which achieved a mean absolute
error of 3.6 m. Furthermore, the work in [6] presents an
AoA estimation algorithm that employs a maximum likelihood
(ML)-weighted iterative approach to estimate both the carrier
frequency offset (CFO) and AoA jointly using a circular
antenna array. Despite the complexity of the ML approach,
the accuracy in AoA with respect to the multiple signal
classification (MUSIC) algorithm [10] is increased by 10%.

Similarly, the authors in [7] proposed a method that com-
bines nonlinear recursive least squares and Kalman filtering
in order to deal with the multipath and noise effects in the
baseband in-phase (I) and quadrature (Q) samples associated
with the CTE. Results show that the average AoA estimation
error can be decreased by 3.9◦ compared to MUSIC. The mul-
tipath effect of the wireless channel has also been investigated
in [8], which combines nonlinear least squares, zero-forcing
equalization, and fast Fourier transform to deal with noise
and fading. Based on simulation results employing a Rayleigh
fading channel, the proposed approach illustrates accuracy im-
provements with respect to the MUSIC algorithm. In addition,
the authors in [9] propose a method employing signal fitting
combined with the propagator direct data acquisition (PDDA)
angle estimation algorithm. This approach circumvents the
need to compute phase differences between antennas, thus
reducing computational complexity. However, despite being
less computationally intensive, the PDDA method does not
offer improved accuracy compared to MUSIC.

Traditional AoA approaches are generally categorized
into three main types: conventional beamforming algo-
rithms, subspace decomposition methods, and parametric tech-
niques [11], [12]. Conventional beamforming includes the
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Bartlett method [13], while subspace decomposition methods
feature algorithms such as MUSIC [10], estimation of signal
parameters via rotational invariance techniques (ESPRIT) [14],
and the Capon method [11]. Finally, parametric methods
encompass techniques such as space-alternating generalized
expectation-maximization (SAGE) and ML estimation [3]. In
this work, subspace decomposition estimation using MUSIC
has been chosen over other methods because it provides sta-
tistically consistent estimates in contrast to the beamforming
techniques, while also being computationally attractive com-
pared to parametric methods [12]. Furthermore, the MUSIC
became a benchmarking alternative to most existing methods,
being less complex than parametric methods [11], [12] and
more accurate than ESPRIT [15].

In this paper, we aim to classify the quality of the AoA
measurements, discarding bad AoA estimates. Such feature
is critical to enabling practical, real-world applications, while
the literature is vague in addressing this issue. The proposed
method is designed to remove outliers as the measurements
are processed, so we propose an algorithm based on a slid-
ing window median filter, which is further compared to an
adjustable threshold. Thus, every new AoA estimate obtained
by the MUSIC algorithm is compared to the median of the
N previous valid estimates. If the measurement quality does
not fit the designed threshold, it is considered an outlier and is
discarded. In order to validate our method, we have conducted
experiments with a 4 × 4 uniform rectangular array (URA)
receiving signals from three BLE tags. Results show that
the proposed method reduces the root mean squared error
(RMSE) by 54.9% compared to traditional MUSIC, while
the probability of achieving measurement errors below 5◦

increases from 77% to 83% with the proposed scheme.

II. FUNDAMENTALS

To perform AoA measurements, the receiver must be
equipped with an antenna array, so that the AoA estimates
using the received signal provide an elevation angle θ and
an azimuth angle ϕ. In the case of a URA, with MX antenna
elements in the horizontal direction and MY antenna elements
in the vertical direction, the total number of antenna elements
is M = MX × MY. In addition, the distance between the
centers of the array elements in the two directions are denoted
by dX and dY, respectively.

At the URA, the received signal at time t is denoted by
x(t) = [x1(t), x2(t), . . . , xM (t)]

T , with (·)T denoting the
transpose operation. Then, x(t) can be written as [10], [11]

x(t) = As(t) + n(t), (1)

where s(t) = [s1(t), s2(t), . . . , sp(t)]
T is an attenuated ver-

sion of the transmitted signal, p is the number of signal sources
captured by the receiver, n(t) = [n1(t), n2(t), . . . , nM (t)]

T

is the zero-mean additive white Gaussian noise, with spatial
covariance matrix σ2

NIM , where σ2
N is the noise variance and

IM the identity matrix of size M , while A ∈ CM×p is the
steering matrix, given by

A = [a(θ1, ϕ1), a(θ2, ϕ2), . . . , a(θp, ϕp)] , (2)

in which a(θi, ϕi), i ∈ [1, p], denotes the steering
vector for the i-th signal source [10], [11]. In
the case of URA, it can be expressed as [11]
a(θi, ϕi) = aY,i ⊗ aX,i, where ⊗ denotes the Kronecker
product, while aX,i =

[
1, ejψX,i , . . . , ej(MX−1)ψX,i

]T
,

aY,i =
[
1, ejψY,i , . . . , ej(MY−1)ψY,i

]T
, with ψX,i =

2πdXλ
−1 cos θi sinϕi, ψY,i = 2πdYλ

−1 sin θi sinϕi, and λ
being the wavelength.

A. MUSIC Subspace Decomposition

The MUSIC algorithm estimates the AoA of the signal
sources from x(t) by performing eigen-decomposition of the
covariance matrix Rxx = E[xxH ] of the received signal [10],
[11], where (·)H denotes the Hermitian transpose operation
and E[·] is the mathematical expectation. By assuming that all
underlying random noise processes are ergodic, the statistical
expectation can be replaced by a time average, so that for N
snapshots we have that [11]

Rxx =
1

N

N∑
n=1

x(tn)x
H(tn), (3)

where tn is the time instant of the n-th snapshot.
In addition, in a multipath environment, the signals arriving

at the array are often highly correlated, so the forward-
backward (FB) averaging is usually employed to obtain more
reliable estimates [11], defined as

RFB
xx =

1

2
(Rxx + JMR∗

xxJM ) , (4)

where (·)∗ denotes the conjugate operation and JM is the
M × M anti-identity matrix, with ones on its anti-diagonal
and zeros elsewhere. The new FB covariance matrix RFB

xx has
rank p, assuming that p < M sources are captured by the
receiver, and it enables the separation of coherent or highly
correlated signals.

Then, the eigenvalue decomposition (EVD) of (4) yields

RFB
xx = UΛUH = USΛSU

H
S +UNΛNUH

N , (5)

where Λ is an M × M diagonal matrix containing the
eigenvalues of RFB

xx , while U is an M × M matrix whose
columns are the eigenvectors of RFB

xx . Moreover, U can be
further decomposed into the signal subspace US ∈ CM×p

and the noise subspace UN ∈ CM×(M−p).
Finally, the MUSIC algorithm exploits the fact that the noise

subspace is orthogonal to the signal subspace. The MUSIC
spectrum is given by [10], [11]

P (θi, ϕi) =
1

|aH(θi, ϕi)UNUHNa(θi, ϕi)|
, (6)

whose denominator represents a measure of the degree of
orthogonality of the steering vector for direction (θi, ϕi) with
respect to the noise subspace. A higher degree of orthogonality
with respect to the noise yields a denominator closer to zero,
generating a peak in the MUSIC spectrum. Then, the AoAs
of the signal sources can be estimated by finding the angles
corresponding to peaks in P (θi, ϕi).



XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

3.25 m 5.69 m

6.52 m 2.42 m

5.38 m

1.03 m 0.44 m

5.71 m

tag A
tag B

tag C

Position 1
Position 2

Fig. 1. Two different positions for the URA and the tags A, B, and C.

TABLE I
TRUE AZIMUTH AND DISTANCE MEASUREMENTS FROM THE URA TO THE

TAGS A, B, AND C.

Experiment
Label Tag URA

Position
True

Azimuth Distance

P1A A 1 −85.1◦ 6.54 m
P1B B 1 79.6◦ 2.46 m
P1C C 1 −46.4◦ 9.00 m
P2A A 2 −72.4◦ 3.41 m
P2B B 2 83.8◦ 5.72 m
P2C C 2 −26.4◦ 7.32 m

III. PROPOSED SCHEME

In this section, we describe the experimental setup used to
evaluate the MUSIC algorithm’s performance, while we also
introduce the proposed method to classify the quality of the
AoA estimates, discarding outliers.

A. Experimental Setup

The experiment was conducted using three BLE Thunder-
board EFR32BG22 transmitters [16], which we denote as tags,
configured with 160 µs CTE packets transmitted with 0 dBm.
Also, we have employed a 4×4 URA antenna (M = 16) using
the EFR32BG22 direction finding radio board (BRD4185A)
from Silicon Labs [17], whose antenna elements are spaced by
dX = dY = 0.04 m. In addition, the experiment was carried
out in a room, where the URA was placed in two different
positions while the three tags were fixed on the walls. Fig. 1
provides a diagram illustrating the two array positions and the
locations of the three tags in the room.

In our analysis, we restrict the scenario to a 2D localization,
so that the URA provides IQ samples, which are fed to the
MUSIC algorithm to extract the azimuth angle, while the
elevation is assumed to be known. Table I outlines six selected
cases for the experiments, which are denoted by P1A (URA at
Position 1 receiving a transmission from Tag A), P1B (URA
at Position 1 receiving from Tag B), P1C (URA at Position
1 receiving from Tag C), P2A (URA at Position 2 receiving
from Tag A), and so on. The distance from the tag to the
URA and the azimuth angle in this table were measured using
a Fluke 414D laser telemeter, with 2 mm precision [18].

TABLE II
RMSE OF THE MUSIC ALGORITHM FOR THE SIX CASES OF TABLE I.

Experiment Label Average Azimuth RMSE
P1A −50.96◦ 66.23◦

P1B 77.96◦ 5.28◦

P1C −48.93◦ 7.54◦

P2A −70.38◦ 6.00◦

P2B 65.28◦ 38.11◦

P2C −28.47◦ 7.07◦

Furthermore, we use the root mean squared error (RMSE)
with respect to the true azimuth value of Table I as the
evaluation metric, which is defined as

RMSE =

√√√√ 1

N

N∑
n=1

(ϕestimated(tn)− ϕmeasured)
2
, (7)

where ϕestimated(tn) comes from the MUSIC algorithm at
time tn, while ϕmeasured is the measured azimuth angle.

B. Azimuth Estimations Using MUSIC

As an initial analysis, we have run the MUSIC algorithm to
estimate the AoA for each of the six cases depicted in Table I.
A total of 10.000 CTEs have been collected, and Table II
summarizes the results in terms of the average estimated
azimuth angle and the RMSE relative to the true azimuth.
As we observe, MUSIC provides good estimates for some
positions, e.g., P1B, P1C, P2A, and P2C, with RMSE values
ranging from 5.28◦ to 7.54◦. However, positions P1A and
P2B exhibit very poor performance, with RMSE values up to
66.23◦. Such variation in performance can be due to several
factors, such as reflections in windows or other objects of
the room, or other interference sources operating at the same
frequency as the BLE.

In order to better understand the obtained high RMSE
values, Fig. 2 plots histograms for the azimuth estimations at
positions P1A, P2B, and P1B. As we observe, the vast majority
of the estimations converge to near the true azimuth value. For
instance, by taking the mode of the measurements for P1A,
i.e., the value with higher occurrence in the histogram, we
obtain −89◦, which is close to the true azimuth of −85.1◦

from Table I. Similarly, the mode for the measurements at P2B
is 81◦, which is close to the true azimuth of 83.8◦. However,
what differs from the histograms for P1A and P2B (with high
RMSE) from the histogram for P1B is the presence of outliers
in a very wide range of azimuth angles. Therefore, identifying
outliers is crucial to improve the MUSIC performance.

C. Proposed Scheme to Filter Outliers

Aiming to remove outliers in an online fashion, we propose
an algorithm based on a sliding window median filter of N
samples, which is further compared to an adjustable threshold
T . Thus, every new azimuth estimate obtained by the MUSIC
algorithm is compared to the median of the N previous valid
estimates. If the absolute value of the difference between
the new azimuth estimate and the median is smaller than a
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Fig. 2. Histograms of azimuth angle estimations using the MUSIC algorithm
for experiments P1A (a), P2B (b), and P1B (c).

Algorithm 1 Proposed Method to Filter AoA Outliers
Require: T , N

1: for CTEcount = 1, . . . , numCTE do
2: Compute the new AoA azimuth estimate ϕ(CTEcount) using

the MUSIC algorithm
3: Calculate the median of the N previous azimuth estimations:

estimate = median(ϕ(CTEcount− 1), . . . , ϕ(CTEcount−
N))

4: Calculate deviation = |estimate− ϕ(CTEcount)|
5: if deviation > T then
6: Discard ϕ(CTEcount) estimate
7: numCTE = numCTE− 1
8: end if
9: end for

predefined threshold, the new estimate is considered as valid;
otherwise, it is considered an outlier and it is discarded.

Algorithm 1 details the proposed method to filter the
AoA estimates. By denoting CTEcount as the index of the
received CTE, we first compute the new azimuth estimate
ϕ(CTEcount) using the MUSIC algorithm (line 2). To deter-
mine if ϕ(CTEcount) is a valid measurement or an outlier we
calculate the median of the N previous azimuth estimations,
denoted by the indexes (CTEcount−1) and (CTEcount−10)
in line 3 of the algorithm. Then, based on the median, we
calculate the absolute value of the difference between variables
estimate and ϕ(CTEcount). If the difference is larger than
an established threshold variable, used as the input of the
algorithm, then ϕ(CTEcount) is discarded (line 6), and the
total number of numCTE is decremented by one (line 7).

IV. RESULTS

In this section, we evaluate the proposed method compared
to the traditional MUSIC algorithm. A total of 10.000 CTEs
have been collected by our experimental setup. First, Table III
employs the proposed method with different N and T , show-
ing the percentage of discarded samples, which are classified
as outliers. The results represent an average across all six
cases in Table I. For better visualization, a color gradient
from green to red is used to represent increasing percentages
of discarded samples. As we observe, the threshold plays a
crucial role in the percentage of discarded samples, with small
T considerably increasing the number of discarded samples.
In order to avoid a high percentage of discarded packets,
which implies a longer acquisition time, we establish 20%
of discarded samples as a limit for reasonable operation.

Next, we select select two cases for further analysis: i.)
(T = 10◦, N = 3), in which a small N is interesting
for algorithmic implementation; and ii.) (T = 8◦, N = 7),
which is the combination with the smallest RMSE among
the combinations in Table III, respecting the 20% limit for
average percentage of discarded samples. Table IV shows
the RMSE and the percentage of discarded samples obtained
with these combinations, compared to the traditional MUSIC
estimation. As observed, the RMSE is significantly reduced
with the proposed method, indicating up to a 50.1% im-
provement in performance compared to the standard MUSIC
algorithm when using (T = 10◦, N = 3), and up to a
54.9% improvement with (T = 8◦, N = 7). In addition,
Table IV also shows the percentage of discarded samples
with these two configurations, specifically for each of the six
experiment positions. As shown, in order to reduce the RMSE
of experiments P1A and P2B, the percentage of discarded
samples must be considerably increased.

Fig. 3 shows the RMSE as a function of the SNR of
the received CTE samples, comparing the standard MUSIC
algorithm with the proposed method using the two selected
configurations. The RMSE is an average of the six experi-
ments. Results show that samples with lower SNR tend to
produce high RMSE in the MUSIC algorithm, while the
proposed algorithm is able to provide more reliable estimates
regardless of the SNR.

Finally, Fig. 4 shows the cumulative distribution function
(CDF) of the RMSE for experiment P2A. The CDF is obtained
by calculating the RMSE of each individual sample with
respect to the true azimuth value of the experiment. As we
observe, the MUSIC algorithm has 77% probability of obtain-
ing RMSE values smaller than 5◦, while the proposed method
increases such probability to 79% with (T = 10◦, N = 3), and
to 83% with (T = 8◦, N = 7), improving the AoA accuracy.

V. CONCLUSIONS

In this paper, we proposed a sliding window median filter-
based method to improve the AoA estimation using BLE 5.1
and the MUSIC algorithm. New AoA estimates are compared
to the median of N previous valid estimates, allowing for the
identification of outliers outside a threshold T . To validate our
method, we conducted experiments with a 4×4 URA and three
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TABLE III
PERCENTAGE OF SAMPLES CLASSIFIED AS OUTLIERS WITH THE PROPOSED METHOD, FOR DIFFERENT N AND T .

T = 3◦ T = 4◦ T = 5◦ T = 6◦ T = 7◦ T = 8◦ T = 9◦ T = 10◦ T = 11◦ T = 12◦ T = 13◦

N = 10 53.54 42.70 34.91 29.90 25.26 20.85 17.08 14.44 12.97 12.12 11.53
N = 9 50.40 39.86 32.54 27.34 22.76 18.75 15.54 13.52 11.98 11.15 10.53
N = 8 52.35 42.19 34.70 29.29 24.73 20.25 16.52 13.74 12.22 11.29 10.63
N = 7 51.07 40.46 33.79 27.81 23.20 19.20 15.98 13.83 12.27 11.27 10.57
N = 6 52.54 43.28 35.74 30.04 25.34 20.88 17.00 14.02 12.48 11.44 10.70
N = 5 52.85 43.14 35.79 30.02 25.38 21.42 18.17 15.86 14.06 12.96 12.19
N = 4 54.41 46.17 38.24 31.84 26.91 22.96 19.47 16.97 15.17 13.95 13.18
N = 3 52.86 45.88 38.44 31.53 26.61 22.47 19.40 16.69 14.69 13.24 12.11
N = 2 57.42 48.18 40.49 33.30 28.34 24.00 20.51 17.76 15.69 14.16 13.02

TABLE IV
RMSE AND PERCENTAGE OF DISCARDED SAMPLES OF THE PROPOSED

METHOD WITH (T = 10◦, N = 3), AND (T = 8◦, N = 7), COMPARED TO

THE MUSIC ALGORITHM.

Experiment RMSE
MUSIC

RMSE
T = 10◦

N = 3

RMSE
T = 8◦

N = 7

% Discard
T = 10◦

N = 3

% Discard
T = 8◦

N = 7

P1A 66.23◦ 11.89◦ 7.32◦ 44.99% 41.66%
P1B 5.28◦ 3.12◦ 3.11◦ 0.28% 0.43%
P1C 7.54◦ 5.16◦ 4.54◦ 11.26% 17.50%
P2A 6.00◦ 4.27◦ 3.96◦ 5.64% 8.13%
P2B 38.11◦ 6.60◦ 5.66◦ 27.10% 32.94%
P2C 7.07◦ 4.61◦ 4.20◦ 10.85% 14.55%
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Fig. 3. RMSE vs. the SNR of the received samples comparing the MUSIC
algorithm and the proposed method with (T = 10◦, N = 3), and (T =
8◦, N = 7).
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Fig. 4. CDF of the RMSE of the MUSIC algorithm and that of the proposed
method with (T = 10◦, N = 3), and (T = 8◦, N = 7) for P2A.

BLE tags. The results demonstrate the effectiveness of the
proposed method in eliminating outliers, achieving an RMSE

reduction of over 50%. Furthermore, we have shown that the
parameters N and T can be tuned to limit the proportion of
discarded AoA samples to no more than 20%. Nevertheless,
for certain positions, the percentage of discarded samples must
be increased to achieve a lower RMSE. Finally, our results
indicate that the proposed method can be used to increase the
probability of achieving measurement errors below 5◦, raising
it from 77% to 83%.
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