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Q-Factor Estimation via Convolutional Seismic
Modeling
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Abstract— This work presents a method for estimating the
seismic quality factor from surface reflection data by solving an
inverse problem based on the convolutional model. Using gradient
descent to minimize the mean square error between observed
and modeled traces, the approach allows flexible attenuation
modeling, with one of its key features being the interchangeability
of the assumed attenuation model. Synthetic tests with known
source and reflectivity demonstrate accurate trace reconstruction,
supporting the method’s potential integration into seismic pro-
cessing workflows. The study also analyzes the effects of model
mismatch by generating data with one attenuation model and
inverting it using another.
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I. INTRODUCTION

The anelasticity and inhomogeneity of seismic media give
rise to two primary phenomena: energy dissipation and veloc-
ity dispersion. Dissipation, characterized by a reduction in the
amplitude of the seismic wavelet, occurs as energy is lost from
the wavelet to the medium. Velocity dispersion, on the other
hand, is characterized by the broadening and delaying of the
wavelet, causing variations in the wavelet’s phase along the
travel path [1]. These two effects are intrinsically linked and
are described by the Earth’s quality factor, Q.

To obtain high-resolution seismic images, accurate treat-
ment of both dissipation and dispersion is essential. Conse-
quently, wave-propagation reversal procedures, such as inverse
@ filtering, are applied. For these methods to be effective,
an accurate estimation of the subsurface ()-factor is required.
While most existing techniques rely on Vertical Seismic Profile
(VSP) data [2], estimating ) directly from surface reflection
data is often more practical and widely applicable. Numerous
studies have been dedicated to seismic attenuation estimation
using a variety of approaches and data types, including en-
hanced log spectral ratio methods [3], interferometric tech-
niques with VSP data [4], and time-frequency transforms [5].

This work presents a method for estimating the ()-factor
from surface reflection data by formulating an inverse prob-
lem based on the seismic convolutional model [6]. Unlike
conventional approaches, our method directly parameterizes
the convolutional model and adjusts its parameters so that the
synthetic trace fits the observed reflection data. The solution
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is obtained using gradient descent to minimize a squared
error cost function. A key advantage of this approach lies
in its flexibility: it allows for easy substitution of different
attenuation models within the same inversion framework.
Furthermore, we explore the influence of attenuation model
selection by generating synthetic data with one model and
attempting to recover () using a different one — highlighting
the practical implications of model mismatch in () estimation.
This dual contribution strengthens the method’s relevance for
inversion applications and provides insights into the robustness
of attenuation assumptions in seismic workflows.

The remainder of this paper is organized as follows: Section
IT presents the theoretical background. Section III describes
the formulation of the inverse problem and the gradient-based
algorithm used for ()-factor estimation. Section IV presents
numerical results for synthetic data generated using multiple
attenuation models. In Section V, the impact of model mis-
match on the estimation accuracy is discussed. Finally, Section
VI provides the main conclusions and outlines directions for
future work.

II. THEORY
A. Convolutional model formulation

According to Ergun [7], seismic data x(¢) can be described
as the convolution of the seismic source wavelet s(t) with the
reflectivity series of the medium r(t), given by:

a?(t):s(t)*r(t):/Rs(t—T) r(r) dr, 0

where the symbol * denotes the continuous-time convolution
between the two signals.

In numerical computations, this operation is discretized
using a sampling period At and expressed as a matrix-vector
multiplication:

x = Sr, 2

where r is a column vector representing the discrete reflectivity
series:

r=[r(0) r(At) r(2At) r(N, —1)AD]", @)

and s is a column vector formed from the discretized source
wavelet:

s=[s(0) s(Af) s(2A0) s(N, — D)AD&
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The matrix S is a Toeplitz matrix of size (N, + Ng—1) x N,.,
constructed by shifting the source wavelet s along its columns:

[s(0) 0 0 0 ]
s(1) s(0) 0 0
s=| o0 s1) s 0 |.
0 s(2) s(1) s(0)
Co

This formulation assumes the seismic wavelet remains un-
changed during propagation (i.e., the source vector is simply
repeated across the columns of S). In practice, however,
energy dissipation and velocity dispersion alter the wavelet’s
amplitude and shape as it propagates [1]. To account for
these effects, Ergun [7] proposed introducing a non-stationary
function a(t, 7) in Eq. (1), such that:

£(t) = s(t)xa(t, 7 r(t) = s(t)x / alt—7,7)r(r) dr, (6)

R
where © is the non-stationary convolution operation, and 7
is the wave’s travel time in the seismic medium. The discrete
counterpart of Eq. (6) is

x = SAr, @)

where A is called the attenuation matrix, with size N,. X N,.,
whose construction is described in the next subsection.

B. Assembly of the attenuation matrix

To construct the attenuation matrix, a one-dimensional
seismic medium is considered, with depth represented by the
variable z. Assuming the medium to be linear, the solutions
of the wave equation can be described as a superposition of
plane waves with fixed angular frequency w [8]. As a result,
the wave amplitude at depth z and time ¢ is given by

u(z,t) = /RS(M) exp [iwt — ik(z,w)z] dw, 8)

where S(w) is the spectral amplitude of the source wavelet
at the surface, and k(z,w) is the wavenumber, dependent on
both depth and frequency. This expression can also be written
as an inverse Fourier transform:

u(z,t) = F 1 {S(w) exp [—ik(z,w)2]} . )

To express the wavefield as a function of travel time 7

instead of depth z, the medium is divided into layers of
thickness Az,, where n indexes each layer, such that:

Az, = vy (wr) AT, (10)

where vy, (w;) is the phase velocity at the n-th layer, assessed
at a reference frequency w,, typically chosen as the central
frequency of the wavelet [9], and At is the fixed travel-time
step. For simplicity of notation, the wave amplitude at the
n-th layer is denoted w,(t), and the wavenumber as k,, (w).

Then, the convolution property of the Fourier transform can
be applied to Eq. (9), leading to the following expression:

Un () = s(t) * an(t), 11

where:

an(t) = F 1 { exp —iATZ kj(w)vj(wr)
j=1

12)

This function describes how the source wavelet s(t) is at-
tenuated upon reaching the n-th layer. To account for the
attenuation across all layers, the attenuation matrix is defined
as follows:

13)

A=lay a ay--- an_1],

where each column vector a,, is obtained by discretizing a, (¢):

an = [an(0) an(At) an(N, — 1A, (14)

In this way, multiplying S by A yields a matrix whose
columns represent the attenuated wavelet at each layer of the
medium.

C. Choice of an attenuation model

According to Ursin [10], the wavenumber is a complex
quantity that combines the frequency-dependent phase velocity
vp(w) and the attenuation coefficient «,(w) in the n-th layer
of the medium in the following way:

@l
Up (W)
The models for the Earth Q-factor behavior are defined by
mathematical expressions for these two quantities. The widely-
used Kolsky-Futterman (KF) model [11], with proper param-
eter adjustment, can behave similarly to most of the models
used in seismic data processing [10]. For this reason, the KF
model was chosen for modeling the attenuation matrix in this
work, although another model can be easily used by choosing
the proper v, (w) and «,(w) expressions. For the purposes of
this work, the @-factor is considered to be uniform through
the propagation medium, meaning that it does not vary with
Z Or T.

The mathematical definitions for the KF model at the n-th
layer are

kp(w) =

— i, (w). (15)

ap(w) = om0, ) O(@n)’ (16)
Lot L w|Y an
on (W) vp(wr) TR (wr)Q(wr) Wr

Replacing these two expressions in Eq. (15), and then the
result in Eq. (12), the expression for the n-th column of the
attenuation matrix becomes

an(t) = -7:71 {fn,disp(w)fn,diss(w)} , (18)
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where f, gisp is @ function modeling the velocity dispersion
effect on the wave propagation at the n-th layer, characterized
by a modification in phase,
. |w] w
fn,disp(w) = exp { InAT <w| Q@) In - )] , (19)
and fp q4iss is a function modeling the dissipation of energy
during wave propagation at n-th layer, characterized by a
reduction of amplitude,

_ |w|nAT
fmdlss(W) = exp I: QQ(WT) .
It is worth noting that, if Q(w,.) — oo, indicating a lossless
medium, it follows that:

(20)

an(t) = F~H {exp[—ilw|nAT]} = 6(t — nAT). (1)
This implies that A becomes the identity matrix, which is
consistent with the expected behavior of a lossless medium.
III. METHOD
A. Cost function definition

Given the analytical expression for the attenuation matrix
calculation, the inverse problem of estimating the ()-factor can
be formulated as a cost function minimization problem

Irgn J(Q). (22)
In this work, a quadratic loss function was adopted:
| NrtNo—2 ,
JQ) =5 2; (ISAx],, —zanm)®.  (23)

where Xops represents the observed seismic trace, and ) =
Q(wy) is the quality factor evaluated at the reference frequency
wy-. It is important to recall that the only factor that varies with
Q@ in Eq. (23) is the matrix A.

B. Gradient descent algorithm

In order to minimize the cost function described at Eq.
(23), the gradient descent algorithm can be employed. In this
context, the quality factor at the k-th iteration is updated as
follows:

(24)

9

aJ(Q

Qr+1=Qr — Tla(Q)‘
Q=Qx

where 7 is the learning rate hyperparameter. The derivative

8‘({3(52) can be analytically obtained, as shown below:
Ny+No—2
oJ — 0A
ang) — 3 ([SAY],, — Zarem) [Sacgr]m’ (25)

m=1

where the derivative % is calculated for each column of the
Oay,(t)

matrix A, resulting in
26
9Q )} e

A 1 1
=0Tyt {|w|An(w) < —i=n |2
s
where A, (w) is the expression inside the brackets of Eq. (18).

o2 2

r

C. Adaptive learning rate

During initial tests, it was observed that the algorithm
struggled to converge because the gradient step became too
small due to the Q% term in the denominator. A practical
modification to the optimization process is the use of an
adaptive learning rate 7)., defined as:

. 2

M = nQk 27)

This adaptation ensures that, for higher values of @), the

gradient descent step is properly scaled. As a result, Eq. (24)
can be rewritten as

A, 0J(Q)
Qr+1 = Q. — My, 9Q oo, (28)
IV. RESULTS

A. Test scenario

To evaluate the performance of the () estimation algorithm,
a one-dimensional seismic medium with a known source and
reflectivity function was used, in order to focus on the quality
factor estimation aspect of the process. The medium has a
uniform quality factor of Q:rn. = 25, which serves as the
benchmark for the estimation process. The source wavelet and
reflectivity series of the scenario are presented in Figures 1 and
2, respectively.
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Fig. 1. Wavelet used for generating the synthetic seismic trace.
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Fig. 2. Reflectivity series used for generating the synthetic seismic trace.

The observed seismic trace Xops 1S generated using the
non-stationary convolutional model in Eq. (7), with S and
r being assembled based on the data presented in Figures 1
and 2, respectively. The attenuation matrix A is calculated
using different Earth quality factor models, following the
formulations described in [1] and [10]. The following Earth
(Q-factor models were used:
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o Azimi model: characterized by a frequency-dependent
attenuation coefficient that follows a power-law:

o (w) = alw|' ™7, (29)
and a phase velocity given by:
1 1 U
= oot (£8). (0
(@)~ oy Falwl et (38). GO

The parameters a and [ are adjustable.
+ Kjartansson model: assumes a constant quality factor
across frequency, resulting in:

an(w) = alw|' ™7, 31)

= a|w| 7 cot (gﬁ) ,

@) (32)

with @ and 3 as tunable parameters.
o Zener model: known as the standard linear solid model,

defined by:
w3,
n = s 33
(8% (W) Un(wr)Qc(1+w27-02) ( )
1 1 2,2
= - T 1. 3
vp(w)  vp(wy) Qc(1 + w?72)

where 7. and ). are the model’s adjustable parameters.

In all cases, the adjustable parameters can be expressed as
functions of the quality factor Q(w,) and the phase velocity
vn(wr), as shown by Ursin [10]. The KF model was also used
to generated the data for an initial test of the )-estimation
algorithm. The resulting seismic traces are shown as the Xqps
curves in Figures 3 to 6.

B. Q-factor estimation algorithm application

The gradient descent update described in Eq. (28) was
applied to each synthetic dataset, starting from an initial guess
of Qo = 200, which represents an almost lossless seismic
environment. For each case, an estimated quality factor, @,
was obtained. The results are illustrated in Figures 3 to 6,
where three seismic traces are shown for comparison:

xg = SAgr, (35)
corresponding to the synthetic trace generated using the atten-
uation matrix Ag, built with the initial guess Qg;

% = SAr, (36)
representing the trace generated using the estimated attenua-
tion matrix A, constructed from the final value () obtained
through the optimization process;
Xobs = S-lebsry (37)
which is the reference trace, generated using the true quality
factor Qe and its corresponding attenuation matrix Agps.
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Fig. 3. Comparison between initial, estimated, and observed traces for data
generated using KF’s model.
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Fig. 4. Comparison between initial, estimated, and observed traces for data
generated using Azimi’s model.
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Fig. 5. Comparison between initial, estimated, and observed traces for data
generated using Kjartansson’s model.
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Fig. 6. Comparison between initial, estimated, and observed traces for data
generated using Zener’s model.

Table I presents the estimated quality factor Q obtained by
the algorithm for each synthetic trace, along with the corre-
sponding relative error in percentage. Each row corresponds
to a different attenuation model used to generate the reference
trace Xops, and the true quality factor used in all cases is
Quue = 25. The relative error is computed as the absolute
difference between Q and Qye, normalized by Qye.
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TABLE I
ESTIMATED QUALITY FACTORS Q AND RELATIVE ERRORS FOR EACH
SYNTHETIC TRACE Xopbs. THE REFERENCE VALUE IS Qtrue = 25.

Trace Estimated Quality Factor @ Relative Error (%)
KF 25.00 0.00
Azimi 20.73 17.08
Kjartansson 2491 0.36
Zener 34.87 39.48

V. DISCUSSIONS

In Figure 3, the estimation method—which uses the KF
model as its inversion framework—is applied to data also
generated with the KF model, thereby testing the method under
the simplest condition. As expected, it accurately estimates the
value Q = 25 with 0% error, as presented in Table I, and
the match between the estimated trace X and the observed
trace Xops 1S perfect, demonstrating the effectiveness of the
algorithm.

In a more complex scenario, the Xops curve in Figure 4
is generated using Azimi’s model. The results in the figure
show that the optimization process successfully reduces the
error between the initial estimate and the observed trace.
However, the match between the estimated trace X and the
observed trace Xops is not perfect. This discrepancy stems
from the incompatibility between the Kolsky-Futterman and
Azimi models, as discussed by Ursin [10]. Therefore, the
estimated quality factor Q = 20.73 presented in Table I
represents the value that best minimizes the error for a trace
originally generated using the Azimi model, even though a
perfect match cannot be achieved.

In Figure 5, the data is generated using Kjartansson’s model.
In Table I, the estimated Q value is very close to the true
value Qyrue, With a relative error of 0.36%, and the fit
between X and Xops is nearly perfect. This indicates that
the cost function—Eq. (23)—approaches zero. Such accuracy
is possible because the Kjartansson model can be closely
represented within the Kolsky-Futterman framework, as shown
by Ursin [10].

In contrast, the application of the estimation method to
data generated using Zener’s model (Figure 6) shows that,
although the error between Q and Q. is elevated (39.48%,
as seen in Table I), the error between X and X,ps remains
small. This again reflects the incompatibility between the
Zener and Kolsky-Futterman models, as discussed by Ursin
[10]. Nevertheless, the estimated value Q = 34.87 within
the Kolsky-Futterman framework allows the synthetic trace to
closely approximate the observed one, despite the discrepancy
in @ values.

VI. CONCLUSIONS

This work proposed a flexible method for estimating the
seismic quality factor @ from surface reflection data by
solving an inverse problem based on the convolutional model.
The proposed technique, which applies gradient descent to
minimize the mismatch between observed and modeled traces,
proved to be effective in reconstructing seismic waveforms,
even when the exact value of () was not recovered.

The results highlight that the estimated () value is intrin-
sically linked to the chosen attenuation model rather than to
a fixed physical property of the medium. As demonstrated
in the Zener model case, even when the estimated () value
differs significantly from the actual one, the reconstructed trace
can still closely match the observed data. This reinforces the
notion that () is model-dependent and must be interpreted
accordingly.

Given its simplicity and flexibility, the proposed method
shows strong potential for integration into seismic deconvo-
lution workflows. Future work will explore the use of a non-
uniform quality factor, enabling application to more realistic
scenarios in which attenuation remains constant within each
layer but varies across layers. This can be achieved by adapting
the method to incorporate a vector of )-factor values, one for
each sub-layer, rather than relying on a single global value as
done in this paper. We also plan to evaluate the method under
more realistic conditions, including the presence of additive
Gaussian and impulsive noise, to assess its robustness in
practical settings. Ultimately, our goal is to apply the method
to real field data to validate its performance in real-world
scenarios.
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