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Abstract—We evaluate the design of an unrepeatered
optical system based on the simultaneous optimization of its
transmission, reception, and amplification parameters by a
neural network algorithm (NNA), aiming at maximizing the
achieved mutual information (MI). After transmission system
design, the probabilistic shaping (PS) method applying the
Maxwell-Boltzmann (MB) and supergaussian (SG) distributions
is also optimized by an NNA considering MI as the objective
function. Non-uniform constellations achieved transmission rates
slightly higher than the uniform case. The minor gains
observed for the MB and SG distributions suggest that their
implementation may not be advantageous in the investigated case
study.

Keywords—Unrepeatered optical system, probabilistic shaping,
system optimization.

I. INTRODUCTION

W ITH the advent of technologies that enable the
development of next-generation (5G/6G) mobile

networks, data streaming, and augmented reality, there is
an exponential increase in the demand for data transmission
capacity of communication systems. In this context, optical
networks are a key technology to meet the current demand for
telecommunications infrastructure. Specifically, unrepeatered
optical systems, which do not have active elements along
the link, are an important alternative to provide high-capacity
connectivity in areas of difficult access or submarine
applications [1, 2].

In the design of such systems, a maximum propagation
power threshold is typically imposed for the transmitted
channels to prevent them from being degraded by Kerr-related
nonlinear effects arising from the propagation of high optical
power through the optical fiber [3–5]. This technique is
commonly used due to the complexity, cost, and energy
consumption associated with digital signal processing (DSP)
algorithms for nonlinear compensation. However, this solution
is suboptimal, since only the power propagation profile
and noise insertion are evaluated, neglecting other inherent
propagation effects of a modulated channel through an
optical link. Additionally, non-uniform constellations using
probabilistic shaping (PS) have been widely used as an
alternative to increasing the data transmission capacity of
communication systems [6, 7]. However, despite being well
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consolidated in the literature, this technique has still been little
explored concerning unrepeatered optical systems.

This work presents the design of an unrepeatered optical
system based on the optimization of its transmission,
amplification, and reception parameters by an optimization
algorithm with a heuristic inspired by neural networks (Neural
Network Algorithm – NNA) [8]. The proposed optimization
procedure maximizes the mutual information (MI) without
considering a priori maximum propagation power limit for the
transmitted channel, aiming to achieve the best compromise
between linear and non-linear degradation for the evaluated
scenario. Furthermore, we conduct performance analysis
using PS with various probability distributions, where the
NNA algorithm is used to optimize the parameters of each
distribution. In this sense, this paper is organized as follows:
Section II describes the NNA algorithm’s optimization
methodology; Section III presents the method for designing an
unrepeatered optical system using NNA; Section IV discusses
the methodology used to optimize the probabilistic shaping
scheme; Section V presents the results obtained considering
different probability distributions; and Section VI concludes
the paper.

II. NEURAL NETWORK ALGORITHM

The Neural Network Algorithm aims to find an optimal
solution to either maximize or minimize a given function,
which may correspond to a performance metric [8]. The
algorithm is inspired by the functioning of neurons in
biological nervous systems, which leads to its implementation
based on the architecture of artificial neural networks (ANNs).
Figure 1 provides a flowchart detailing the operation of the
NNA. First, a vector of random variables, X , is generated,
representing the variables to be optimized. Additionally, a
vector of weight values, W , is generated, playing the same
role as weights in ANN, that is, minimizing the error between
the network’s predicted output and the correct output. Then,
the vectors X and W are updated for the next iteration.

To mitigate the risk of converging to local minima or
maxima, the algorithm employs two functions, operator bias
and transfer function, which enhance the exploration of the
solution search space. The first function is analogous to the
mutation stage in genetic algorithms [9], acting as a noise
that changes the values of X and W , allowing for broader
exploration of potential optimal solutions and preventing
premature convergence. The transfer function modifies new
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Fig. 1. Flowchart describing the NNA.

standard solutions, gradually bringing them closer to the target
solutions found, as defined in Eq. 1:

TF (Xi(t+ 1)) = Xi(t+ 1)+ (1a)

2× rand× (XTarget(t)−Xi(t+ 1)), (1b)
i = 1, 2, ..., Npop. (1c)

where Xi(t+1) is the X values of the next iteration after the
step of update, XTarget(t) is the optimal values of the vector
X for maximizing or minimizing the cost function, finally
Npop is the size of the population of standard solutions.

After the Bias Operator or Transfer Function, the cost
function is applied in the resulting X , and then compared
with XTarget. If the result of the cost function applied in X
is lower than the cost function applied in XTarget, XTarget

is updated with the X value. Otherwise, XTarget stays the
same. Subsequently, the termination criteria is verified, and the
optimized X is returned. In this work, the cost function is the
MI of the optical transmission, and the termination criterion
is the maximum number of iterations. This optimization
algorithm was selected due to its demonstrated ability to locate
global optimal points and its convergence velocity efficiency.

III. UNREPEATERED OPTICAL SYSTEM DESIGN

Figure 2 summarizes the main building blocks of an
unrepeatered optical transmission system. The transmitter
(Tx) accomplishes electro-optical conversion. The receiver
(Rx) includes electro-optical front-ends and the digital signal
processing (DSP) chain to compensate for deleterious effects
arising during transmission. To increase the optical link
maximum reach, the amplification architecture comprises
distributed Raman amplification (DRA) and remote optical
pump amplification (ROPA) stages, both with remote pump
units (RPUs) for forward and backward pumping schemes.

The proposed design method is implemented using an
optical simulator developed in-house coded in Python,

transmitting a single 1550-nm channel with quadrature
amplitude modulation in 64 levels (64QAM) with 32-GBd
symbol rate through a 300-km optical link. On the
transmitter side, a DSP-Tx stack is employed to create
the modulated optical signal through the generation of
pseudo-random symbols and applying root raised cosine
pulse shaping with a 0.1 roll-off factor. Subsequently,
the digital-to-analog converter (DAC) converts the digital
sequence into an analog waveform that modulates the optical
carrier in both polarizations. The optical signal propagates
through a first span composed of low-loss single-mode fiber
(0.18-dB/km attenuation, 16-ps/nm/km chromatic dispersion,
and 1.35-km−1W−1 nonlinear parameter at 1550 nm)
emulated with the split-step Fourier (SSF) method, where the
signal is amplified by a forward-pumped DRA-Tx followed
by a ROPA-Tx. The signal subsequently propagates through
an intermediate link before being amplified again, this time
by backward-pumped ROPA-Rx and DRA-Rx amplifiers.
Finally, the signal reaches the receiver (Rx), where it is
initially detected by the electro-optical front-end comprised
by a 90◦ hybrid and a local oscillator, followed by balanced
photodetectors, resulting in an electrical signal. This signal
is converted to the digital domain by an analog-to-digital
converter (ADC) and processed by the DSP-Rx. The
implemented DSP chain is composed of orthonormalization,
chromatic dispersion compensation, decision-directed least
mean square (DD-LMS) for dynamic equalization, carrier
recovery with unsupervised blind phase search (BPS), and
4th-power carrier phase and frequency recovery stages.
Finally, the mutual information (MI) is calculated and
employed as the objective function for the NNA to
optimize the system parameters. The transmitter, receiver, and
amplification parameters to be optimized, as well as their
search ranges, are presented in Table I. In the proposed
optimization procedure, the algorithm employs 15 variables, a
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Fig. 2. Diagram architecture of an unrepeatered optical system.

population of 45, and a maximum of 10 iterations. The power
profile of the resulting system is presented in Fig. 3, showing a
maximum propagation power of the signal equal to 4.95 dBm
at the transmitter-side ROPA output. As a result, the optimized
unrepeatered system achieved a MI equal to 5.57 bit/symbol,
an optical signal-to-noise ratio (OSNR) in the receiver equal
to 25.39 dB, and a bit error rate (BER) before forward error
correction (FEC) equal to 2× 10−2.

IV. PROBABILISTIC SHAPING

Additionally, a probabilistic shaping encoder was integrated
into the DSP-Tx stack to produce a symbol sequence
conforming to the desired probability distribution to be
evaluated. This encoder was implemented by constant
composition distribution matching (CCDM) [10]. In this
work, we consider the Supergaussian (SG) distribution [11],
expressed by Eq. 2:

Pr(Ak) =
1∑

Ai
e−λ|Ai|N

e−λ|Ak|N , k ≥ 0 (2)

where Ak is the symbol amplitude, and λ and N
are constants factors. Likewise, the Maxwell-Boltzmann
(MB) [12] distribution, which is a specific case of the
Supergaussian with N = 2, was also evaluated. Although
the MB distribution is known to be optimal for an additive
white Gaussian noise channel, the Supergaussian distribution is

TABLE I
OPTIMAL UNREPEATERED OPTICAL LINK PARAMETERS OBTAINED BY

NNA.

Component Parameter Interval Optimal
value

Signal
Launched Power -5 – 5 dBm -3.54 dBm

Channel wavelength 1550 – 1560 nm 1550 nm

Transmitter

1st DRA pump power 50 – 150 mW 63.89 mW
2nd DRA pump power 50 – 150 mW 75.63 mW

ROPA pump power 50 – 150 mW 135.26 mW
ROPA position 50 – 100 km 65 km

Erbium-doped fiber length 10 – 20 m 11 m

Receiver

1st DRA pump power 100 – 300 mW 173.62 mW
2nd DRA pump power 100 – 300 mW 114 mW

ROPA pump power 100 – 300 mW 250.12 mW
ROPA position 50 – 150 km 55 km

Erbium-doped fiber length 10 – 20 m 14 m

Amplification
1st DRA pump wavelength 1420 – 1460 nm 1455 nm
2nd DRA pump wavelength 1420 – 1460 nm 1460 nm

ROPA pump wavelength 1475 – 1490 nm 1480 nm

included in the analysis to eventually cope with nonlinearities.
The parameters of both distributions (i.e., λ for MB
distribution, and λ and N for SG distribution) are also
optimized by the NNA aiming at maximizing the MI.

V. RESULTS

Initially, for the MB optimization, the NNA parameters
were one variable (λ) and a population equal to 5, given
that we considered five times the number of variables to be
optimized. A maximum number of iterations equal to 10, and
maximum and minimum values of λ equal to 0.1 and 0.
Resulting in an optimal λ of 0.00985165, corresponding to
a MI of 5.615 bit/symbol. Equivalently, the NNA parameters
to optimize the SG distribution were two variables (λ and
N ), a population and a maximum value of iterations equal to
10, maximum and minimum values of λ equal to 0.1 and 0,
respectively, and maximum and minimum values for N equal
to 3.5 and 2.0, respectively. Resulting in optimized values
of λ equal to 0.005229749 and N equal to 3.5 for an MI
of 5.61. The maximum number of iterations was determined
based on the trade-off between execution time and cost
function convergence. Figures 4 and 5 present the cost function
(MI) curve as a function of the NNA algorithm’s iteration
for the MB and SG distributions, respectively. Given the
results shown, it is observed that a maximum of 10 iterations
was sufficient for the cost function of both distributions to
converge.

Upon completion of the optimization process, Fig. 6
depicts the resulting 64QAM constellation symbols in
a three-dimensional space, with phase and quadrature
components represented on the X and Y axes and the
a-priori symbol probability represented on the Z. Specifically,
Fig. 6(a-c) depict the uniform, MB and SG distributions,
respectively. The final MI results obtained after optimization
are summarized in Table II. Using the uniform distribution,
the resulting MI is equal to 5.57 bit/symbol. The optimization
of the MB distribution results in an optimal λ of 0.0098,
corresponding to an MI of 5.61 bit/symbol. The SG
optimization procedure results in an optimal λ of 0.0052 and
an N of 3.5, yielding an MI of 5.61 bit/symbol.

The results indicate that both the MB and SG distributions
yield small but measurable gains compared with the uniform
distribution. However, an eventual increase in complexity
associated with the implementation of probabilistic shaping,
and the well-known impact of PS in the chain of DSP
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Fig. 3. Power profile of the unrepeatered system with the parameters resulting from NNA optimization.

algorithms, may not justify its implementation in the evaluated
scenario. The equivalent results obtained by the MB and SG
distributions suggest a Gaussian-like profile for the noise,
where little gain is attained by considering the additional
degree of freedom of the SG distribution. This implies that,
for the unrepeatered system here considered, besides the
non-definition of a maximum propagation power threshold as
a design rule, the NNA resulted in a link with minimal impact
of nonlinear degradation effects, being primarily limited by
the insertion of amplified spontaneous emission (ASE) noise
at each amplification stage.

VI. CONCLUSIONS

A method for designing unrepeatered optical links based
on the optimization of systemic parameters using a neural
network algorithm (NNA) was evaluated. In addition, a system
performance analysis was conducted using probabilistic
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Fig. 4. Cost function (MI) as a function of NNA’s iteration for cost function
convergence analysis for MB distribution.

TABLE II
MUTUAL INFORMATION AND THE TRANSMISSION RATE GAIN FOR THE

PROBABILITY DISTRIBUTIONS CONSIDERED IN THE UNREPEATERED
OPTICAL SYSTEM OPTIMIZED.

Average Mutual Information per Polarization
Uniform Maxwell-Boltzmann Supergaussian

(bit/symbol) (bit/symbol) (bit/symbol)
5.57 5.62 (+1.80%) 5.61 (+1.44%)

shaping with both Maxwell-Boltzmann and Supergaussian
distributions. In this scenario, PS yielded minimal gains
compared to the uniform distribution for both MB and SG
distributions. These findings suggest that the complexity of
PS may outweigh its benefits. The equivalent performance
achieved by both MB and SG distributions suggests that
the channel may resemble a Gaussian profile. In this
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Fig. 5. Cost function (MI) as a function of NNA’s iteration for cost function
convergence analysis for SG distribution.
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Fig. 6. Constellations employing probabilistic shaping with different distributions.

context, further studies may explore the application of PS
in conjunction with higher-order modulation formats or in
scenarios characterized by more severe nonlinear impairments,
where its benefits are likely to be more substantial.
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