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Advances in the Use of rPPG for Non-Invasive
Heart Rate Estimation
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Abstract— Despite the growing adoption of remote photo-
plethysmography (rPPG) for non-contact heart rate monitoring,
conventional whole-face approaches face major challenges in real-
world scenarios. These include sensitivity to facial movements
(e.g. blinking, talking) and uneven illumination, both of which
degrade measurement accuracy. To address these limitations, this
article presents a comprehensive evaluation of six unsupervised
rPPG algorithms (ICA, GREEN, CHROM, LGI, PBY, and POS)
across 21 anatomically defined facial regions, with the objective
of identifying the most robust and precise zones for heart rate
estimation. Our results show that specific regions, particularly
the forehead, outperform full-face analysis due to their higher
vascular density and reduced susceptibility to motion artifacts.
Experiments on standard datasets reveal that region-specific
methods achieve mean absolute errors below 1.5 beats per
minute, and certain combinations of algorithm-regions improve
accuracy by up to 66% compared to conventional techniques.

Keywords— Heart rate estimation, contactless BPM monitor-
ing, computer vision, signal processing.

I. INTRODUCAO

The use of physiological signals for disease diagnosis has
become increasingly relevant in modern medicine, especially
with technological advances that allow precise and non-
invasive patient monitoring [1]. Among these signals, heart
rate, often represented by beats per minute (BPM), stands
out as a crucial indicator of health conditions. Traditionally,
BPM monitoring is carried out using specific equipment
such as electrocardiograms (ECG) or photoplethysmography
(PPG) with physical sensors, offering real-time insights into
cardiovascular function.

However, capturing and interpreting these signals presents
significant technical challenges [2]. Detection accuracy de-
pends on several factors, such as sensor quality, position of the
equipment on the body, and interference from external noise.
In addition, collecting and analyzing these signals often de-
mands a controlled environment and is dependent on invasive
or high-cost equipment, which is not always feasible in more
dynamic clinical contexts, such as home care, telemedicine
consultations, or emergency situations. The high cost of pre-
cision monitoring equipment can further restrict accessibility,
especially in low-resource settings, creating disparities in
cardiovascular care. Invasiveness and discomfort caused by
traditional methods, combined with financial barriers, can also
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pose challenges to continuous patient monitoring, limiting the
ability to perform regular exams and detect early signs of
cardiovascular problems.

Recently, an innovative approach has emerged: the use of
cameras to estimate BPM non-invasively, without the need
for physical contact with the patient. This technique, known
as remote photoplethysmography (rPPG), has been gaining
attention since initial studies around 2008 [3]. It is based on
the detection of subtle changes in skin color caused by blood
circulation, observed through real-time videos or photographs.
The principle behind rPPG is that heartbeats create small
fluctuations in blood flow, which are reflected as changes in
skin tone, visible even without physical sensors [4].

This non-invasive approach offers several advantages over
traditional methods. The main advantage is the elimination
of the need for physical contact with the patient, which can
increase acceptance of the technique, particularly among indi-
viduals who are averse to invasive tests. Furthermore, the use
of cameras allows for continuous remote monitoring, making
it ideal for telemedicine and remote diagnostics, expanding
access to healthcare, especially in underserved regions or
during situations such as pandemics.

However, the use of rPPG presents some technical chal-
lenges, such as image quality, the influence of lighting con-
ditions, patient movement, and the presence of artifacts in
the images. The accuracy of BPM estimation depends on
the ability to efficiently process this information and apply
advanced machine learning algorithms to interpret the signals
in a robust and precise manner. The evolution of image pro-
cessing technologies and artificial intelligence has been crucial
in overcoming these obstacles, enabling greater reliability in
using rPPG for real-time BPM estimation.

This study investigates the feasibility and effectiveness of
using rPPG for accurate BPM estimation, highlighting the
technological advances that enable the effective capture of
these signals and the precise interpretation of the data, even
in scenarios outside controlled environments. The primary
contributions of this work lie in advancing the understanding
of spatial dynamics in rPPG and demonstrating the benefits of
region-specific signal extraction. By systematically evaluating
six unsupervised algorithms in multiple facial regions, the
study provides both practical insight and methodological tools
to improve heart rate estimation in real world scenarios. The
main contributions are as follows:

o Facial Segmentation into Anatomically Defined ROIs:
The study introduces a detailed segmentation of the face
into 21 anatomically grounded regions of interest (ROIs),
allowing localized and targeted rPPG signal extraction.
This approach allows for a more granular understanding
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of spatial signal quality variations across the face.

o Analysis between ROIs and rPPG Algorithms: A com-
prehensive evaluation was conducted to explore the in-
teraction between specific ROIs and six unsupervised
rPPG methods. The results reveal that certain region-
method combinations significantly outperform full-face
approaches, emphasizing the importance of region-
algorithm compatibility.

« Identification of Optimal Regions for Robust Heart Rate
Estimation: The study highlights that the flatter, more
illuminated and less mobile facial regions, particularly
the forehead, produce higher accuracy in the estimation
of heart rate due to the favorable anatomical and envi-
ronmental properties. These insights provide actionable
guidance for improving rPPG systems in real-world set-
tings.

The article is structured as follows. Section II presents a
review of relevant and related works in the literature. Section
IIT describes the materials and methods used to develop the
technology. Section IV presents the results obtained through-
out the study, along with a detailed discussion. Finally, Section
V concludes the study and outlines potential directions for
future work.

II. RELATED WORKS

Numerous studies have explored non-invasive methods for
measuring vital signs, with a particular focus on rPPG as a
promising alternative. Several classical methods adopt unsu-
pervised mathematical or statistical techniques to extract the
rPPG signal from video frames. These include approaches
such as Remote plethysmographic imaging using ambient light
(GREEN) [3], Advancements in noncontact multiparameter
physiological measurements using a webcam (ICA) [5], Ro-
bust pulse rate from chrominance-based rPPG (CHROM) [6],
Local group invariance for heart rate estimation from face
videos in the wild (LGI) [7], Improved motion robustness of
rPPG by using the blood volume pulse signature (PBV) [8] and
Algorithmic principles of rPPG (POS) [9]. These methods rely
on decomposing the video signal captured through the Red,
Green, and Blue (RGB) color channels to design a synthetic
signal capable of representing the individual’s PPG. They show
that rPPG signals can be reliably extracted using relatively
simple mathematical models.

However, challenges remain, particularly with regard to
noise and artifacts. For example, the GREEN method lever-
ages the predominance of the green channel, based on the
higher absorption of green light by hemoglobin. However, the
ICA method further improves signal quality by exploiting all
RGB channels, considering the absorption characteristics of
hemoglobin in both visible and near-infrared spectra.

Motion and environmental changes are also significant
obstacles. The CHROM method addresses this by modeling
the influence of illumination changes on color perception,
proposing chrominance-based signals to mitigate the impact of
specular reflections. LGI extends this idea by refining motion-
robust signal extraction.

To enhance motion robustness, de Haan and van Leest [8]
proposed to derive a unique physiological signature of the

pulse of blood volume, based on average pixel values from
the skin regions. Their method suppresses non-conforming
signals through a new linear combination of the skin’s RGB
values. Building upon physiological and optical models, the
POS algorithm [9] introduces a temporally normalized RGB
space and defines a plane orthogonal to the skin tone to isolate
the cardiac signal more effectively.

In contrast to previous studies that focus on a single method
or signal property, this work proposes a hybrid approach
that combines and evaluates multiple rPPG techniques across
different facial regions. Specifically, the face is segmented
into ROIs and various combinations of methods are tested
in each region, such as chrominance-based filtering, color
normalization, physiological signatures, and mathematical de-
composition. The goal is to identify optimal strategies to
mitigate artifacts and improve signal quality, leading to BPM
estimates that are more accurate and robust, especially in
unconstrained environments.

IIT. MATERIALS AND METHODS

The main tool used in this study is the rPPG Toolbox, a
platform that combines various extraction techniques in one
place [10]. The rPPG Toolbox serves as a comprehensive
platform for rPPG, integrating various extraction techniques
and algorithms for efficient physiological signal measure-
ment. It supports both traditional unsupervised algorithms and
advanced supervised neural methods, making it flexible for
researchers and developers to benchmark existing methods and
create their own algorithms and deep learning models.

The proposed methodology aims to extract and validate
BPM from videos and PPG signals using image and signal
processing techniques. The input of the system consists of a
video and a traditionally collected PPG file, obtained from the
Pulse Rate Detection Dataset [11], which contains sequences
of PNG-format images (video frames) of individuals along
with a file that includes the PPG signal measured during the
recording. Initially, the video goes through a face detection
process using the dlib library, the first modification compared
to the rPPG Toolbox which ends up using HaarCascade and
Retina Face. The intention is to locate the face throughout the
video and then segment it into ROIs, which are specific areas
for analyzing the signal. Each ROI is extracted and saved as a
sequence of frames, with each frame being resized to 72x72
pixels. In addition, the PPG value corresponding to that ROI
is saved next to the frame in an .npy file.

For each pair of data generated in this pipeline (containing
an ROI and its respective PPG value), the signal is processed
using different blood volume pulse (BVP) extraction methods.
The BVP signal and the label value are then passed to a
function that calculates the BPM, using specific filters on
the BVP signal to generate the rPPG. Once the rPPG has
been obtained, both signals (rPPG and PPG) are analyzed
using the fast Fourier transform (FFT) in Algorithm 1 or
peak detection (PD) in Algorithm 2 functions, which make
it possible to calculate the bpm generated by the video and
the PPG provided.

The system is validated by comparing the BPM values
obtained from the rPPG with the BPM values of the provided
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Algorithm 1 Heart Rate Calculation using FFT
Require: ppg_signal, fs =
high_pass = 2.5Hz

Ensure: Estimated heart rate ff¢_hr in BPM
1: Preprocess signal:

. ppg_signal <+ expand_dims(ppg_signal, 0)

: Compute FFT parameters:

. N < next_power_of_2(len(ppg_signal))

(f_ppg, prx_ppg) < periodogram(ppg_signal, fs, N)

. Apply frequency bandpass:

. fmask_ppg < where((f_ppg > low_pass) A (f_ppg <
high_pass))

. mask_ppg < f_ppg[fmask_ppg]

. mask_pxx < prr_ppg[fmask_ppg]

10: Find dominant frequency:

11: peak_idx + argmax(mask_pxx)

12: hr_hz < mask_ppg|peak_idx]

13: fft_hr < hr_hz x 60

14: return fft_hr

60Hz, low_pass = 0.75Hz,
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Algorithm 2 Heart Rate Calculation using Peak Detection
Require: ppg_signal, sampling rate fs in Hz
Ensure: Estimated heart rate hr_peak in BPM
1: Peak Detection:
. ppg_peaks < find_peaks(ppg_signal)
: Calculate Intervals:
. peak_intervals < diff(ppg_peaks)
mean_interval < mean(peak_intervals)
: Convert to Heart Rate:
. hr_peak + 60x /s

mean_interval
: return hr_peak

® NN AW

PPG signal. For this comparison, performance metrics are
generated, such as the mean absolute error (MAE) described
in Equation 1 and the mean absolute percentage error (MAPE)
as follows in Equation 2. These metrics are calculated indi-
vidually for each ROI and for each BVP extraction method,
allowing a detailed assessment of the system’s accuracy and
reliability under different conditions and for different facial
regions. This approach aims to provide a robust and accurate
analysis of heartbeats from the combination of videos and PPG
signals, with quantitative validation through error metrics.
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Figure 1 illustrates the mapping of the facial ROIs used
to extract the BVP signal. Segmentation is performed based
on facial reference points, forming colored polygons super-
imposed on the original image. Each ROI is identified by
a distinct color, with a side legend that facilitates visual
identification.

In the work by [10], the MAE and MAPE metrics were
described and are used in Table I, where we present the results

Identified ROIs

ROI 1
ROI 10
ROI 11
ROI 12
ROI 13
ROI 14
ROI 15
ROI 16
ROI 17
ROI 18
ROI 19
ROI 2
ROI 20
ROI
ROI

Fig. 1. Facial ROI mapping used for BVP extraction. The face is segmented
into specific ROIs, which are individually analyzed to extract physiological
signals. Image extracted from the UBFC-rPPG dataset [12].

obtained for different methods. The ICA method showed the
best performance in terms of MAE, while the PBV method
obtained the lowest MAPE value considering the complete
face. However, by using segmentation in ROIs along the face,
it was possible to achieve even lower values for both metrics
in certain methods.

Taking into account the data set used, the ICA method,
applied to ROI 3, was found to show the best results in both
MAE and MAPE, which is in line with several previous studies
in the literature [13]. In addition, other methods also showed
significant improvements when applied to specific regions.
The CHROM method, for example, reduced MAE by 3.46 in
ROI 17, while POS showed an MAE reduction of 2.38 when
applied to ROI 16. These results suggest that segmenting the
image into more homogeneous regions that are less susceptible
to variations in lighting and movement contributes to greater
robustness of rPPG algorithms.

On the other hand, the PBV method had the best MAPE
performance in the full-face approach, with a value of 4.82.
However, it underperformed when applied to ROI 16, achiev-
ing a MAPE value of 5.85. This behavior may be related
to the method’s sensitivity to the specific characteristics of
the selected region, indicating that not all algorithms benefit
equally from ROI segmentation.

In summary, the results reinforce the effectiveness of using
ROIs in rPPG algorithms, especially the ICA method, which
proved to be the most accurate in this context. However, the
choice of method and ideal ROI can vary according to the
capture conditions and the physiological characteristics of the
individual, reinforcing the importance of careful evaluation in
different scenarios.

The results presented in Table I show that ROI 3 performed
with the lowest MAE and MAPE values when used with
the ICA method [5], corroborating previous studies on the
effectiveness of this region [13]. Although ROIs such as cheeks
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TABLE I

MEAN ABSOLUTE ERROR (MAE) AND MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) FOR EACH ROI AND METHOD.

ROI POS ICA OMIT LGI PBV CHROM GREEN
1 12.22119.28 12.58 11599 8.65110.21 8.69110.36 11.14113.01 114811596 13.42118.75
2 43117.16 3.3713.05 278 1295 2778 1295 5.5917.35 6.2519.79 9.65111.43
3 22114.22 1.25 1 1.57 1.33 1 1.72 1331172 113111211 23314.60 10.69 1 13.66
4 19.65130.14 19.6512832 154012219 15.72122.77 18.97128.76 19.43128.67 18.86126.76
5 19.40129.65 16.52123.37 13.81118.70 13.61118.41 15.32121.53 19.60129.68 16.06122.26
6 6.46111.68 6.60 | 6.82 6.3119.23 6.3119.23 5.70 1 8.07 8.15114.68 12.92115.21
7 6.04110.93 4.86 | 4.63 49117.26 4.88 17.21 8.3118.98 6.55111.89 10.82113.16
8 7.44111.42 7.2418.12 4.5415.09 4.5215.06 9.29110.78 8501 12.36 7.9218.43
9 7.52110.43 7.4819.02 5.76 1 5.26 5.76 1 5.26 9.0519.39 9.87113.82 7.9718.46
10 9.22113.14 8.2219.84 7.28 16.71 7.2916.73 9.05110.17 13.4312045 7.4718.43
11 5.33110.21 5.6716.48 5.7718.13 5.75 1 8.09 9.54111.73 698111.19 9.86111.31
12 5.78 1 10.59 6.0117.01 3551544 3551544 1021111.62  6.1419.69 9.321110.89
13 8.46113.17 84311148 5.1116.96 5.0516.88 10.04 1 12.08 8.51113.46 10.39111.81
14 9.8711533 9.27111.60 5.2517.10 5.5918.01 1017 111.83 11.99117.21 13.02 | 15.57
15 2.0913.97 1.38 12.24 1.4212.20 1.42112.20 7.0017.88 276 1 4.54 8.62110.76
16 1.40 12.76 4.0313.73 2.78 1 3.46 2.78 1 3.46 495 | 6.45 3331495 8.64110.32
17 1.48 | 2.69 2391247 24912.83 2491283 8.16 19.90 2.3213.71 7.18 | 8.55
18 6.12110.84 6.0517.67 5.7117.70 5.7117.70 9.60111.04 6.86111.04 14.47116.21
19 4.1917.09 891 111.14 6.55 1 7.60 6.48 1 7.51 7.0317.98 5.8519.19  1292115.29
20 4.7217.61 6.58 19.10 2971445 3.00 1 4.49 8.82110.77 5.1117.95 10.11 1 12.69
21 6.30110.11  7.93110.80 4.1116.32 4.3016.61 9.50111.87 855113.37 11.57114.50
FullFace  3.63 1 7.18 4.8114.53 4.65 1 4.96 4.56 1 4.90 4.64 1 5.35 57211145 10.13110.34

tend to introduce noise due to facial movements [14], regions
such as the forehead preserve greater stability even in dynamic
environments.

IV. DISCUSSION

Results reveal that region-specific analysis can signifi-
cantly improve heart rate estimation over traditional whole-
face approaches. In particular, regions such as the forehead
consistently demonstrated superior performance due to their
anatomical advantages,namely higher vascular density, as well
as their flatter surface geometry and relative uniformity in
illumination and motion. These characteristics contribute to
reduced susceptibility to motion artifacts and lighting varia-
tions, common challenges in real-world rPPG applications.

Although several algorithms-ROI combinations achieved
MAEs below 1.5 BPM, some results were notably poor.
These lower-performing cases can be partially attributed to
the inherent simplicity of certain unsupervised methods, which
lack sophisticated mechanisms to compensate for motion,
lighting fluctuations, or intersubject variability. The forehead,
for instance, showed robust results across multiple algorithms,
whereas more dynamic or irregular regions (e.g., the lips or
chin) performed inconsistently, emphasizing the importance of
careful spatial selection in rPPG signal extraction.

Nonetheless, several limitations must be acknowledged.
The study relied exclusively on a single benchmark dataset,
which, although commonly used, contains a limited number of
subjects and recordings under constrained conditions: a static
single-camera setup with fixed angle and no environmental

variability. In addition, reference heart rate values were ob-
tained from oximeter readings provided by the dataset, without
independent verification of their accuracy. Only unsupervised
methods from the rPPG toolbox were evaluated, and perfor-
mance was assessed solely using BPM as the output metric,
excluding signal quality measures or temporal coherence anal-
yses.

Another significant challenge lies in managing the high
dimensionality of the data. Each frame provides 21 ROlIs,
each of which is processed by six algorithms, leading to a
large number of signal permutations. Establishing correlations
between subjects, methods, and regions becomes complex,
limiting interpretability and requiring advanced visualization
techniques. Moreover, from a computational perspective, the
use of multiple independent ROIs, rather than a single full-
face region, substantially increases processing time, as each
method must perform inference per region per frame, which
could hinder real-time deployment.

Despite these constraints, the results suggest that region-
specific approaches offer a promising pathway for enhancing
the robustness and accuracy of non-contact heart rate monitor-
ing. Future work should explore multi-metric evaluation, in-
clusion of supervised methods, and adaptive models capable of
selecting optimal ROIs dynamically. Expanding the dataset to
include more subjects, variable lighting, and different camera
configurations will also be essential to validate generalizability
and support real-world applications.
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V. CONCLUSION

This work proposed and evaluated a methodology for ex-
tracting heart rate from videos, combining rPPG algorithms
with facial segmentation in ROIs. Different signal extraction
methods were tested, applied both to the complete face and
to specific ROIs, and the results were evaluated based on
quantitative metrics such as MAE and MAPE.

The experiments showed that the right choice of ROI,
combined with the most appropriate method, can significantly
improve the accuracy of the estimates of BPM. In partic-
ular, ROI 3, combined with the ICA method, showed the
best results for the dataset used, outperforming traditional
approaches based on the full face. These findings show that
simpler, more targeted solutions can improve the performance
of more complex strategies, which is especially relevant for
applications on devices with limited computing resources.

As a direction for future work, we propose investigating
approaches that combine multiple ROIs and signal extraction
methods to enhance robustness and introduce redundancy in
heart rate estimation. Fusion strategies that integrate signals
from distinct facial regions could improve stability under vary-
ing conditions of motion, lighting, and individual physiological
differences. Additionally, future research should explore the
use of supervised and deep learning-based rPPG algorithms
to overcome the limitations observed with unsupervised meth-
ods, particularly in handling complex motion artifacts and
illumination changes. Expanding the evaluations to larger and
more diverse datasets, with multiple camera angles, mobile
scenarios, and varied skin tones, performing comparison with
other relevant literature works in addition to the results from
the tool box, and calculating a statistical validation of the
results would further support the generalizability of the find-
ings. Moreover, incorporating alternative evaluation metrics
beyond BPM, such as the signal-to-noise ratio (SNR) and
temporal coherence, could provide a more comprehensive
assessment of signal quality. Finally, addressing the compu-
tational burden of region-specific inference remains a critical
challenge, and future solutions may benefit from real-time
optimization techniques or hardware acceleration to support
practical deployment.
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