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Abstract— Since optical networks support data-intensive appli-
cations, ensuring transmission reliability is crucial. Conventional
failure detection often relies on simplified thresholds or super-
vised learning, requiring large failure datasets. Semi-supervised
methods offer viable alternatives by handling limited or im-
balanced data. This work proposes a failure detection method
integrating an autoregressive (AR) model and a one-class support
vector machine (OCSVM). The AR model extracts relevant
features, enhancing OCSVM performance. The approach was
evaluated using an optical testbed dataset. Results show that
integrating AR with OCSVM improved detection accuracy from
66.86% to 84.17% compared to the traditional OCSVM without
AR.

Keywords— Optical Networks, Semi-supervised Learning, One-
Class Support Vector Machine, Autoregressive Model, Failure
Detection.

I. INTRODUCTION

A wide range of services and applications (e.g., 6G systems
and generative AI-driven applications) increasingly depend
on fast and reliable data transmission from optical networks.
Therefore, ensuring the quality of transmission of these
systems becomes crucial, as the optical networks are the
only technology capable of meeting these data requirements.
Moreover, optical networks are susceptible to faults that lead
to packet loss or service degradation, making accurate fault
detection methods vital [1].

Typically, conventional fault detection methods rely on
simplified thresholds, which exhibit limitations in practical
optical networks with many parameters [2]. Hence, machine
learning (ML)-based approaches enable handling complex
tasks and support effective and automated fault detection [3].
Most ML-based approaches focus on supervised learning (SL)
algorithms. However, SL algorithms require a large amount
of data from normal and fault conditions to be adequately
trained. This requirement hinders their deployment in practical
scenarios, as fault data is often scarce and hard to collect [4].

In contrast, semi-supervised learning (SSL)-based ap-
proaches are a promising alternative, as they require only
normal data for training. In that case, the model can effec-
tively recognize data from failure conditions once fed with it
[5]. Recent studies demonstrate the applicability of the one-
class support vector machine (OCSVM) algorithm in optical
networks. Patri et al. [6] compare the effectiveness of the
OCSVM and artificial neural network (ANN) algorithms for

Vitor Dias, Marcílio Santos, Andrei Ribeiro, Fabrício R. Lobato, and João
C. W. A. Costa, Institute of Technology, Federal University of Pará, Belém-
Pará, Brazil, e-mail: [dias.vitor, marcilio.santos, andrei.ribeiro]@itec.ufpa.br,
[frl, jweyl]@ufpa.br; Moisés F. Silva, Los Alamos National Laboratory, Los
Alamos-NM, USA, e-mail: mfelipe@lanl.gov

fault detection in optical networks under the optical spectrum-
as-a-service (OSaaS) model. Similarly, Abdeli et al. [12] uses
OCSVM applied to fault detection in an optical network to
compare the effectiveness of an autoencoder-based approach
with Gated Recurrent Units (GRUs)

Therefore, in this work, we propose an SSL-based approach
that combines a One-Class Support Vector Machine (OCSVM)
algorithm with an autoregressive (AR) model to detect faults in
optical networks. The AR model extracts essential information
from the data, enhancing the learning of OCSVM using normal
operating conditions. Proper mapping of these conditions may
enable the proposed approach to detect various types of
failures accurately. To date, no studies have been conducted
on the application of AR to optical networks.

The rest of the paper is structured as follows. Section II
presents the theoretical fundamentals of the OCSVM and
the AR model. In Section III, the results of the proposed
approach are presented. Finally, in Section IV, the conclusions
are presented.

II. AR-ASSISTED OCSVM-BASED APPROACH FOR
FAILURE DETECTION

A. One-Class Support Vector Machine

Support Vector Machine (SVM) is a supervised ML tech-
nique for classification and regression problems. It is applied
in anomaly detection due to its generalization capability in
efficiently handling non-linear data [7]. OCSVM is a variation
of SVM designed to train using only positive information (nor-
mal data), in the context of unsupervised and semi-supervised
learning strategies. As a kernel-based method, given training
data X = {x1,x2, . . . ,xn}, a compact subset of Rm, the
algorithm maps them into a higher-dimensional feature space
H (Φ(x) : X → H) via a kernel function f [8]. In this H
dimension, a maximum margin hyperplane (w ·Φ (xi) = ρ) is
defined by the support vectors that separate the data from the
origin. Hence, the training data is the first class, and the origin
is the only second-class member. To achieve this separation,
a quadratic programming problem must be solved [9]:

f(w) = min
∥w∥2

2
− ρ+

1

νN

N∑
i=1

ξi,

subject to ω ·Φ (xi) ⩾ ρ− ξi, ξt ⩾ 0. Normal data are con-
tained within the high-density region defined by the decision
boundary w and equal to +1 by the function f , while the
anomalies are in the sparse region and equal to -1. However,
in this work, we invert these notations for clear visualization
purposes: anomalies and normal data are assigned values of
+1 and -1, respectively.
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Fig. 1: Overview of the proposed approach comprising the telemetry data collection, data preprocessing, AR modeling, and OSCVM-based failure detection.

B. Autoregressive model

AR is a statistical model that predicts the next value in a
time series based on a sequence of its previous values [10].
The general form of this model is given by:

xt = ϕ0 + ϕ1xt−1 + ϕ2xt−2 + · · ·+ ϕpxt−p,

where xt is the value of the time series at time t, which
the model aims to predict, the coefficients ϕi represent the
influence of past values xt−i on the current value xt. Finally,
ϕ0 is the white noise at time t, accounting for the portion of xt

not explained by the previous values. The order of the model,
denoted by p in AR(p), indicates how many past time steps
are considered in the prediction [11].

The AR feature extraction process begins with the choice of
model order. The chosen autoregressive coefficients obtained
after fitting the model constitute the main extracted features.
Each coefficient quantifies the relationship between the value
of the series at the current time and the value at one of the nine
previous lags. Thus, each coefficient carries information about
the strength and direction of the influence of the corresponding
past value on the present value. For example, a positive and
significant coefficient for the first lag (ϕ1) indicates that the
immediately previous value exerts a strong positive influence
on the current value.

C. Proposed approach for failure detection
Fig. 1 depicts the proposed approach for failure detection.

First, the dataset comprises samples from normal and fault
conditions. Next, the training and testing data matrices are
defined as X and Z, respectively.

In the training phase, only data collected under normal
conditions are utilized. This data matrix comprises n samples
and m features or telemetry parameters. Subsequently, the
AR model is applied to each sample individually, resulting
in a new dataset with d extracted features. These training
features represent the temporal dependence between the values
in the series and lie in a lower-dimensional space (d < m).
In this case, the dimensionality reduction highlights the most
critical variations in the data. First, the AR model is applied
individually to each sample, extracting features representing
the temporal dependence between the values in the series.
These dimensionality reduction results aim to simplify the
model and highlight the most critical variations in the data,
projecting them into a lower-dimensional space. Since the
data is compressed into a lower-dimensional space by the AR,
the OCSVM training begins. The model calculates a decision
boundary encompassing the normal data in the feature space.
Thereafter, the model assigns a score corresponding to the
Euclidean distance of each sample from the decision boundary
that has been obtained. Finally, the threshold is generated and
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Fig. 2: Optical testbed [12].

adjusted with the parameter ν, which defines the expected
proportion of anomalies within the normal data. Therefore,
scores below the threshold are negative, indicating samples
from normal conditions within the hyperplane.

In the testing phase, both normal and fault conditions are
used. The matrix Z, with n samples and d features, represents
the testing data fed into the trained OCSVM model. Therefore,
for fault detection, the scores of the new data are assigned and
compared with the threshold learned during training. Thus, any
sample with a score above the threshold, i.e., with a positive
value, is classified as a fault.

III. RESULTS

A. Experimental setup and data acquisition

The experimental dataset, which has been made available
in a public GitHub repository, is generated using a custom-
designed testbed that simulates an optical network environ-
ment, as shown in Fig. 2 . The testbed is configured to repro-
duce real-world scenarios and emulate various types of fiber
optic failures. Different fault joints are created with varying
losses to produce a variable pattern of faults. To simulate
different fault conditions, the testbed is designed to introduce
the following failures: fiber cuts, optical eavesdropping (fiber
tapping), dirty connectors, and bad splices.

The collected dataset consists of 125832 samples and 36
features. Each feature represents different optical parame-
ters provided by the Optical Time Domain Reflectometer
(OTDR), such as Signal-to-Noise Ratio (SNR). A total of
62 to 65,000 OTDR records are collected and averaged. The
OTDR configuration parameters—sampling time, the pulse
width and wavelength—are set to 1 ns, 10 ns, and 1650 nm,
respectively. The dataset is composed of data from normal and
fault conditions, presenting different types of faults, additional
information is available in [12].

B. Data preprocessing and model fine tuning

Fig. 3 illustrates the dataset before AR feature extraction.
It’s possible to observe along the X-axis that the black and
red lines intertwine, indicating that the values of these specific
features are not consistently different enough to distinguish the

two conditions clearly. This overlap suggests that the original
features may have a low capacity for discrimination between
the normal and failure states of the system being monitored.
If the values of a particular feature are similar in both normal
and failure conditions, that feature contributes little to the
identification or classification of the problem.

Following data collection for this approach (totaling 11521
samples), the dataset was split. The first 7216 samples, corre-
sponding to normal conditions, formed the training set to ad-
just the ML models. The subsequent 4305 samples constituted
the test set to assess the model’s performance on novel data.
It is important to note that failure samples are presented only
in the testing dataset. Initially, the training phase is driven by
first reducing the dimensionality of the data using AR. After
testing several values of p, the value with the highest training
accuracy is 9.
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Fig. 3: Ten random samples from the training and testing sets (comprising
normal and failure conditions) along with the 31 features (comprising the
SNR and OTDR traces).

Therefore, the radial basis function kernel is used after
fine-tuning, as it is more suitable for scenarios with high-
dimensional data. The γ parameter, coefficient of the kernel
function, which controls the influence of a single training sam-
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ple on the shape of the decision boundary, is set to scale. Thus,
γ is calculated automatically based on the number of features
and their average variance. Finally, the ν parameter, used to
control the proportion of failures allowed during training and
the minimum fraction of support vectors, is set to the value
with the highest training accuracy, 0.04. Following training,
nine features are extracted from the adjusted model and stored,
forming a compressed dataset in a lower-dimensional space
for use in fault detection. For this reason, the integration
of a dimensionality reduction method that compresses the
telemetry dataset into a smaller dimensional space becomes
essential to provide a scalable fault detection approach.
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Fig. 4: Ten random samples from the training and testing sets after AR feature
extraction, resulting in only 9 features.

Fig. 4 shows the new compressed dataset generated by the
AR. It’s possible to perceive a change in the overlap pattern
between the samples in normal conditions and those with fail-
ure. Although some overlap still exists, in particular features,
the red lines (failure condition) tend to exhibit more extreme
positive and negative values than the black lines (normal
condition), which generally remain closer to zero. This greater
separation, even if not complete across all features, suggests
that the AR model has managed to extract characteristics from
the original data that are more discriminative between the
normal and failure conditions.

C. Fault detection results

To evaluate the performance of the proposed method, the
metrics employed include accuracy and the rates of false
positives (FP) and false negatives (FN). In optical networks,
FP errors indicate that the model is signaling a failure even
when the network is operating normally. In this sense, FP
errors can lead to unnecessary maintenance actions, generating
operational costs that could have been avoided. In the case of
FN errors, the model does not detect a true fault in the network.
FN errors can be even more damaging, leading to continuous
and active faults without intervention. Therefore, finding ef-
fective ways to reduce FP and FN errors is necessary to ensure
efficient resource management and network reliability.

This section evaluates two scenarios for the OCSVM-based
fault detection approach: I) without feature extraction using

AR, and II) incorporating AR-based features. The goal is to
compare the model’s performance in both configurations. Fig.
5(a) shows the performance results of OCSVM without AR
feature extraction. The accuracy obtained is 66.86%, while
the FN rate is 31.34%, and the FP rate is 1.81%. These
results indicate that, without the dimensionality reduction
provided by AR, OCSVM struggles to classify new samples
and detect faults. This is evidenced by its low success rate
of only 26.74% in identifying fault samples, likely due to
the model’s limitations when dealing with high-dimensional
data. The confusion matrix in Fig. 5(b) shows the accuracy of
the OCSVM with the application of AR. The model correctly
identified 84.16% of the samples under failure conditions. The
FN and FP rates obtained are 13.61% and 2.23%, respectively,
which can be considered a low number of false alarms.

(a) OCSVM without AR feature extraction.

(b) OCSVM with AR feature extraction.

Fig. 5: Confusion matrices of the compared scenarios. The diagonal elements
represent the percentage of points for which the predicted label is equal to
the true label, while off-diagonal elements are those that are mislabeled by
the model, i.e., the false-positive and false-negative errors.

When used without feature extraction, the OCSVM model
showed limited capability in detecting faults, resulting in many
FN errors. As observed in Fig. 3, most fault condition data
also fall within this same range, making it challenging for
the OCSVM to correctly distinguish between normal and
fault behavior. This overlap in data distribution contributes
to the model’s difficulty in accurately identifying faults, as
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fault instances exhibit characteristics similar to the normal
ones. To address this limitation, features extracted using AR
are introduced. As shown in Fig. 4, the AR-based features
significantly improve the separability between normal and fault
data. Unlike the raw input values, the AR features capture
temporal patterns that are not immediately apparent, allowing
the model to distinguish fault conditions better.

Moreover, Fig. 6 presents the scores obtained by the model
during both the training and testing phases. As mentioned
earlier, the model identify 84% of the fault samples. The black
dots represent the training data used to fit the model. Some
of these dots appear above the threshold line, indicating the
proportion of samples the model, according to the ν parameter,
expects to classify as failures. This tolerance contributes to
better performance in the testing phase by reducing the number
of FN errors. The blue dots correspond to normal condition
data from the testing set; those above the threshold represent
2.23% of FPs. The red dots e the fault samples from the test
set, and those below the threshold line account for 13.61%
of FNs. These results demonstrate the effectiveness of the
proposed approach in distinguishing between normal and fault
conditions. Thus, combining the AR model for feature extrac-
tion with the OCSVM for anomaly detection is a strategy that
contributes well to capturing temporal dependencies and iden-
tifying deviations from normal behavior, even without labeled
failure data. This contribution showed satisfactory results, as
FNs reduced from 31.34% to 13.61%, and accuracy increased
from 66.86% to 84.17%. In this regard, the dimensionality
reduction from 31 to 9 features achieved by the AR model
enhances the scalability of the proposed approach.

Fig. 6: Performance of the OCSVM fault detection approach over each
observation.

IV. CONCLUSION

This work explores combining an AR-based feature ex-
traction technique with the OCSVM model to perform fault
detection in optical networks. In this sense, the proposed
approach generated satisfactory results compared to the per-
formance of OCSVM without being combined with AR. The
OCSVM without AR achieved an accuracy of 66.86%, as well

as 1.81% and 31.34% FPs and FNs, respectively. Therefore,
a considerable performance gain was observed when using
OCSVM in combination with AR, achieving an accuracy
of 84.16%, as well as 2.23% and 13.61% FPs and FNs,
respectively. The proposed approach adequately overcomes
the imbalance in the data, as it proved capable of efficiently
detecting faults. In addition, the reduction in FN errors resulted
in a 17% increase in accuracy.
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