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Implementing Network Slicing in 5G Transport
Networks Using Programmable Switches
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Abstract— With the increasing complexity of 5G networks,
flexible solutions are needed to ensure the requirements of
each service. Network slicing isolates resources for different
services, but there is no standard for end-to-end isolation in
the transport network domain. This work explores using SDN
and programmable P4 switches for network slicing in the trans-
port domain. It presents a solution that accommodates various
interconnections between the radio access and core network,
evaluated in an experimental setup with FreeSGC, UERANSIM,
and Kathara. Results show the solution effectively maintains SLA
requirements, enhancing flexibility in the SG transport domain.
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I. INTRODUCTION

The emergence of Fifth Generation of Mobile Networks
(5G) did not represent a mere incremental evolution but a
complete overhaul of network architecture, primarily focusing
on digitalization, automation, and integration with other indus-
tries [1]. This new generation introduces advancements such as
higher speeds, ultra-low latency (below 1 ms), massive support
for connected devices (IoT), improved spectral efficiency, and
new business opportunities. In this context, according to the
ITU-R in [2], three primary use case categories stand out:
Enhanced Mobile Broadband (eMBB), a direct evolution from
4G, offering higher transfer rates and greater bandwidth; Ultra-
Reliable Low-Latency Communications (URLLC), designed
for services requiring high reliability and extremely low la-
tency; and Massive Machine-Type Communications (mMTC),
covering applications involving a massive number of con-
nected devices with extremely low power consumption. This
increase in the variety of services supported by 5G networks
demands a flexible, scalable, and modular infrastructure ca-
pable of simultaneously supporting diverse Quality of Service
(QoS) requirements. To meet these demands, a modular 5G
Core (5GC), Software-Defined Networking (SDN), and net-
work slicing are adopted [3].

Unlike its predecessors, the SGC adopts a Service-Based
Architecture (SBA), in which each function offers and con-
sumes services through standardized APIs. This allows for
more dynamic and effective integration between functions,
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reinforcing modularity and facilitating network evolution as
new demands arise [1]. To meet these demands, technologies
such as network slicing have been implemented, allowing for
logical and efficient network segmentation. Despite significant
advances in 5G networking, slicing still faces challenges in the
transport domain due to the lack of clear standards from orga-
nizations such as the O-RAN Alliance [4] and 3rd Generation
Partnership Project (3GPP) [5], which currently define only
the core and Radio Access Network (RAN) communication
aspects, hindering effective end-to-end slice isolation.

While obtaining slicing information in the RAN and core
domains is relatively straightforward, as Network Slice Se-
lection Assistance Information (NSSAI) values are directly
carried in packets, in the user plane, data is encapsulated in
GPRS Tunneling Protocol (GTP) tunnels that do not explicitly
contain the slice identifier. Traditional forwarding and routing
strategies based on IP addresses or ports can be applied for ba-
sic traffic differentiation. However, such approaches may prove
insufficient in specific scenarios, such as the one described in
[5], where multiple distinct slices share the same User Plane
Function (UPF) instance. In such cases, simple destination
analysis does not ensure proper isolation, requiring additional
mechanisms in the transport plane capable of inspecting deeper
packet information to separate traffic efficiently.

This paper proposes using P4-programmable switches to
implement network slicing in the 5G transport domain. The so-
lution utilizes P4’s capability to inspect the innermost headers
of packets encapsulated in GTP User Plane (GTP-U) tunnels,
dynamically segmenting traffic from different network slices
based on the User Equipment’s (UE’s) source and destination
IP addresses. The proposal’s effectiveness is validated in an
experimental test environment integrating Free5GC, UERAN-
SIM, and P4 Behavioral Model (BMv2) switches. Finally,
the results demonstrate proper isolation of slices representing
eMBB and URLLC services while simultaneously meeting
different SLA (Service Level Agreement) requirements guar-
anteed by each slice, even when they share a single UPF (User
Plane Function) instance.

II. RELATED WORKS AND MOTIVATION

Recent research has explored the application of network
slicing in 5G networks, examining various techniques and
strategies to ensure data transport efficiency and isolation.
Rommer et al. [1] detail the 5SGC architecture and explore
network slicing as a key enabler to meet diverse service
requirements. Their discussion, however, is confined to the
access and core domains, leaving unaddressed the challenges
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associated with effective slicing within the transport domain.
Wen and Yan [6] proposed an innovative architecture that
implements the UPF directly on P4 switches, demonstrating
significant performance gains over traditional software-based
solutions. Nevertheless, their approach is limited to specific
use cases and does not address the logical slicing of multiple
services. A more recent work by Wen and Yan [7] improves
upon this by addressing the logical segmentation of various
slices, offering a more scalable and flexible solution for 5G
network slicing.

NEC patented a transport-domain slicing solution presented
in [8], which highlights using a single UPF; however, it
adopts a different approach, separating flows based on the
Tunnel Endpoint Identifier (TEID) and VLANs. The GSMA
[9] states that there is currently no network slicing standard
for the backhaul, although such standardization has existed
for the core since the first 5G release and, more recently,
in the RAN. Meanwhile, the O-RAN Alliance [4] proposes
using VLANSs or addressing slice isolation, given the lack
of existing standardizations. On the other hand, the [5] only
provides requirements for the transport domain, with the
slicing standard being applied solely to the Core and RAN.

In contrast to related works that utilize VLANs or Tunnel
Endpoint Identifiers (TEIDs), the main advantage of our
approach lies in its ability to inspect the inner IP header of
GTP-U encapsulated packets, allowing for precise forwarding
that is independent of the UPF configuration. To the best of
our knowledge, this is the first work to utilize the user’s inner
IP address as a routing key for network slicing directly in
the transport plane, solving the challenge of multiple slices
sharing a single UPF instance.

III. TRANSPORT NETWORK SLICING USING
PROGRAMMABLE SWITCHES

Since no established standard for slicing exists in the
transport domain, solutions that implement isolation solely
within this network segment are possible. Exploiting this gap,
our work uses P4 switches to inspect and segment backhaul
traffic, achieving end-to-end slice isolation independently of
the core architecture and without relying on RAN components.

To differentiate the slices without modifying the packet,
we adopted an approach that separates them based on the
source and destination IP addresses. This approach allows
the transport network to operate normally even when multiple
slices share a single UPF instance. As illustrated in Figure 1,
GTP packets do not carry any information about the slice to
which they belong. Moreover, using P4 to segment the data
plane based on the source IP range as a traffic differentiation
criterion is not feasible with classical routing techniques,
which only see the blue layer in Figure 1. In that figure,
the orange fields—the source and destination IP addresses
visible in the outer layers—are the only ones perceived by
conventional switches and correspond to the gNB address.

We chose the P4 language to program these switches
because it enables the extraction of data from the innermost
layers of the packet, such as the inner IPV4 layer (red layer)
in Figure 1. The packet headers had to be manually described,

‘ Dest Source Type DSCP || Length TTL Prot Csum IPV4 ‘
H Src port ] { Dest port } { Length } { Csum ] uDP ‘
H Flags J [ Message Type } [ Length J { TEID J GTP \‘
‘/ Dest Source Type DSCP || Length TTL Prot Csum IPV4 ‘

‘ Other Protocols ‘

Fig. 1. Structure of a GTP packet that is routed in the transport domain,
highlighting the fields used for slice separation with P4.

including all relevant protocol fields, to allow this inspection.
With this setup, we used P4 to segment the transport plane and
make forwarding decisions based on the green fields in the
figure, representing the inner source IP address for uplink and
the destination IP address for downstream, leveraging SDN
switches to access this information and effectively separate
the traffic.

Figure 1 helps visualize these layers. From top to bottom,
the blue block represents the outer [Pv4 header, which contains
the protocol (prot), checksum (Csum) and the routing informa-
tion used in the transport network; the UDP datagram includes
a header and carries the GTP-U payload, where fields such as
the TEID (the GTP tunnel identifier) are located. Deeper in the
stack, the red block represents the inner IPv4 header, where the
UE’s source IP address appears, and contains the information
that drives our slice-aware forwarding logic. Accordingly, in
the P4 program, we declared each header according to the
standard format: Ethernet with MAC addresses and EtherType;
outer IPv4 (blue); UDP; GTP-U with TEID; and finally the
inner_ipv4 (red), which is used by the data plane tables
to direct traffic for each slice.

This traffic separation using P4 is performed when the
switch receives the packet and parses each protocol layer until
it reaches the inner IPv4 header, highlighted in red. The source
IP address is then extracted and compared with predefined
ranges in the forwarding table. Based on this match, the switch
determines the appropriate output port and forwards the packet
through the corresponding path in the transport network until
it reaches the UPF. On the return path, the logic is similar,
but the forwarding decision is based on the inner destination
(dest) IP address, ensuring that the packet follows the correct
path from the UPF back to the gNB.

IV. DESIGN AND DEPLOYMENT OF THE TRANSPORT
NETWORK SLICING

This section presents the implementation process of the pro-
posed architecture to evaluate a network slicing strategy in the
transport domain of 5G networks using BMv2 programmable
switches with P4. Moreover, the BMv2 software can provide
functional validation of P4 logic. Still, the collected perfor-
mance metrics do not realistically reflects a dedicated P4



XLII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

hardware. The main objective is to verify, through experiments
monitoring the interfaces of network elements, the logical
separation between slices based on the source IP address,
dividing traffic in the data plane without replicating the UPF.

To achieve this, an experimental testbed was developed to
simulate the main components of a 5G network, integrating
tools such as Free5GC! for the network core, UERANSIM?
for RAN and user emulation, and Kathar4® to orchestrate the
topology and BMv2 switches. The entire infrastructure was
built using Docker containers, ensuring the portability and
reproducibility of the experiments.

Z°Kathara &

docker

Data Plane}

Fig. 2. Topology of the experimental environment showing the separation
between the control and data planes.

As shown in Fig. 2, UERANSIM was used for the RAN
simulation, implementing both the UE and the Next Gen-
eration NodeBs (gNB) in standalone mode. The simulator
includes both control and user planes, logically separating
communication between the UE and the core into the Access
Stratum (AS), responsible for radio signaling and data traffic,
and the Non-Access Stratum (NAS), which handles control
messages between the UE and the Access and Mobility Man-
agement Function (AMF). UERANSIM supports key RAN
interfaces, such as the user interface (for connecting to the
UPF), the Service-Based Interface (SBI) interface (for service-
based function communication), and the radio interface, which
is simulated via the User Plane Protocol (UDP) protocol.

The network core was implemented using FreeSGC, an
open-source solution designed to comply with 3GPP specifi-
cations, enabling experimentation with 5G network scenarios
without needing proprietary software or infrastructure. One of
Free5GC’s advantages is its ease of deployment in virtual-
ized and containerized environments, using platforms such as
Docker to emulate SGC operations under different configu-
rations. This characteristic facilitated testing in experimental
networks and enabled the evaluation of service performance
offered by the 5GC.

The gNB, UE, and the transport network were simulated
using Kathard, a lightweight, container-based tool designed
for rapid network topology creation. Kathara allows each net-
work element to run as an isolated container, supporting pre-
configured images such as P4 and UERANSIM, streamlining
the configuration process.

The experimental setup comprises two UEs: one with SST
= 1, associated with the eMBB network slice, and another

"https://github.com/free5gc/free5gc
2https://github.com/aligungr/UERANSIM
3https://www.kathara.org/

TABLE 1
ALLOCATED THROUGHPUT PER EXPERIMENT FOR EACH NETWORK SLICE
CONFIGURATION
Experiment Slice 1 (eMBB) Slice 2 (URLLC)
Exp 1 16 Mbps 4 Mbps
Exp 2 32 Mbps 8 Mbps
Exp 3 50 Mbps 10 Mbps
Exp 4 64 Mbps 16 Mbps

with SST = 2, with the URLLC network slice, as specified
in Table II. The table lists the Tracking Area Code (TAC),
the Mobile Network Code (MNC), and each UE identifier.
Traffic generation is performed using iperf with configured
throughput values ranging from 16 to 64 Mbps per slice, as
defined in Table I, while maintaining logical separation in the
transport network. However, since both slices terminate at a
shared UPF instance, conventional destination-based IP rout-
ing proves insufficient for traffic differentiation. Consequently,
packet forwarding decisions are made by extracting source IP
addresses from encapsulated GTP-U headers. This approach
necessitates BMv2 programmable switches with deep packet
inspection capabilities to process inner packet headers.

In this scenario, two Docker networks were used: one dedi-
cated to Kathara and another to Free5GC. Kathard manages the
containers for the UEs, gNB, and P4 switches, while Free5GC
hosts the core functions. Switch S4 interconnects the two
networks, as shown in Fig. 2, through three interfaces: ethQ
and ethl connected to Kathara (each associated with a slice),
and eth2 connected to the UPF in Free5SGC.

The transport network consists of four switches: S1 receives
traffic from the gNB and, based on P4 logic, classifies flows
according to the encapsulated source IP address. Depending
on the slice, traffic is forwarded to either switch S2 (eMBB)
or S3 (URLLC), which then directs it to switch S4 for
delivery to the UPF. The gNB performs GTP encapsulation
and communicates with the AMF and the UPF, using separate
interfaces (ethl and ethO, respectively) to ensure isolation
between the control and user planes.

This architecture enables scalable and flexible slicing in the
transport plane using a single UPF instance. GTP-U headers
are parsed in the P4 pipeline to extract the UEs’ actual
source IP addresses, allowing slice-aware forwarding without
modifying the core network or replicating UPF instances.
This approach ensures that the QoS requirements of different
slices can be met through programmable logic in the data
plane, validating the efficiency and feasibility of the proposed
solution. Tests were conducted to evaluate the implementation
and measure the CPU usage of the P4 switches and the perfor-
mance of each slice in terms of latency and throughput during
concurrent operation, as detailed in the following section.

V. RESULTS AND DISCUSSION

For the tests, traffic was generated by an iperf client
running on each UE, with the corresponding servers hosted in
the UPF container. The packet was captured using tcpdump
at both the UE egress and the UPF ingress, allowing obser-
vation of traffic behavior along the data path. This capture
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TABLE 11
USER EQUIPMENT (UE) CONFIGURATION PARAMETERS

] Field \ Value \ Description
SUPI 208930000000001 Subscription Permanent Identifier (MCC + MNC + IMSI)
MCC 208 Mobile Country Code (Identifies the country)
MNC 93 Mobile Network Code (Identifies the mobile operator)
IMSI 0000000001 International Mobile Subscriber Identity (Unique subscriber identifier)
TAC 1 Tracking Area Code (Geographic location code within a PLMN)
SST (UE1) 1 Slice Service Type: Enhanced Mobile Broadband (eMBB)
SST (UE2) 2 Slice Service Type: Ultra-Reliable Low Latency Communications (URLLC)
SD (UE1) 010203 Slice Differentiator for eMBB (Unique identifier within the slice type)
SD (UE2) 112233 Slice Differentiator for URLLC (Unique identifier within the slice type)
DNN internet Data Network Name (Name of the external data network)
IP Range (UE 1) 10.60.0.0/16 Allocated IP address range for UE 1
IP Range (UE 2) 10.61.0.0/16 Allocated IP address range for UE 2

methodology provides the granular data to validate how P4-
programmable switches could optimize traffic flows. The re-
sulting capture files were processed by a Python script that
extracted throughput and latency information for every packet.

To enable an accurate analysis, the data from each of the
four experiments described in Table I were grouped into 100
ms windows. The average latency and throughput values were
computed for each interval, yielding more representative plots
and making it easier to visualize the time-varying behavior.

Three key metrics were considered to validate the proposed
architecture and assess its computational impact relative to
switches performing simple packet forwarding: slice through-
put, slice latency, and switch CPU usage. These metrics
are particularly relevant for demonstrating P4’s advantages
in dynamic traffic separation. Four experiments were carried
out in which the transfer rates applied to each slice were
progressively increased, as shown in Table I. It is important to
highlight that the switch handling eMBB slice traffic (S2) is
configured for a maximum rate of 50 Mbps and a latency of
up to 10 ms. In comparison, the switch forwarding URLLC
slice traffic (S3) is set to support a maximum rate of 10 Mbps
with 1 ms latency.

Figure 3 shows the traffic curves for these two slices in
Experiments 2 (yellow curves) and 4 (green curves), as these
cases also represent the behavior observed in Experiments 1
and 3. For the eMBB slice curves (marked with an X), the
green curve shows the transfer rate staying close to the 32
Mbps generated by iperf, while the yellow curve, with 64
Mbps of offered traffic, clearly respects the 50 Mbps cap
configured in switch S2. Similarly, the curves marked with
a dot illustrate the behavior of the URLLC slice: the rate
follows the offered traffic in the green curve (8 Mbps), but
in the yellow curve, when 16 Mbps is injected, it is limited to
10 Mbps, as defined in switch S3.

When analyzing the latency data in Table III, we observe
that the eMBB slice behavior varies according to the applied
transmission rate. In Experiment 2 (32 Mbps), the average
latency remains stable at 11.65 ms with a low standard devi-
ation of 1.52 ms, indicating the infrastructure operates within
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Fig. 3. Traffic observed on the eMBB and URLLC slices during Experiments
3 and 4.
TABLE III
SUMMARY STATISTICS (MEAN AND STANDARD DEVIATION) OF LATENCY
AND THROUGHPUT PER SLICE AND EXPERIMENT

Mean StdDev
Slice 1 Slice 2 Slice 1 Slice 2
Exp 1 10.73 ms 266 ms 032ms  0.10 ms
Exp 2 11.65 ms 2.73 ms 1.52 ms  0.36 ms
Exp 3 132.05ms 758.03 ms 12.59 ms 229.11 ms
Exp 4 13276 ms 853.68 ms 10.42 ms 152.73 ms

the switches’ processing capacity. In contrast, Experiment 4
(64 Mbps) shows the average latency increasing to 132.76
ms with a 10.42 ms standard deviation - clear evidence of
transport plane congestion, precisely the scenario where P4-
enabled slicing prevents cross-slice interference.

Table III presents results for the URLLC slice, which has
significantly stricter latency requirements. At 4 Mbps and
8 Mbps rates, the average latency remains at 2.66 ms and
2.73 ms, respectively, with low standard deviations (0.10 ms
and 0.36 ms), demonstrating stability and compliance with
established Service Level Agreementss (SLAs). However, in
the 10 Mbps and 16 Mbps experiments, latency increases
dramatically to 758.03 ms and 853.68 ms, respectively, with
high standard deviations (229.11 ms and 152.73 ms). These
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results highlight the critical role of P4-programmable switches
in maintaining slice isolation under excessive load conditions.
They should be interpreted as a validation of the isolation
between slices, and not as absolute performance benchmarks
that would be achievable on hardware.

Finally, several noteworthy points are revealed by the CPU-
usage plot for the containerized switches (Figure 4). First,
although switches S1 and S4 handle the same traffic volume
during the 0-15 s interval, their resource usage differs slightly.
This overhead is expected, as S1 performs the more complex
task of deep packet inspection, analyzing multiple headers
(Ethernet, outer IPv4, UDP, GTP) to access the inner IP,
whereas S4 merely relays packets arriving from S2 and S3
to the core network. The additional processing complexity at
S1 translates into roughly a 10% higher CPU load than S4.

The figure also shows that except for S1—which processes
all incoming traffic—the CPU consumption of the other
switches converges to a plateau. This behavior is tied to the
throughput cap each slice can sustain. Once the first bottleneck
in the data path is reached, the overall system throughput is
limited, and the resource usage of downstream elements levels
off accordingly.
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Fig. 4. CPU usage of switch containers during experiments, showing
increased load on Switch S1 due to packet inspection and slice-aware
forwarding with P4.

Although the experiments were conducted with two slices,
the forwarding logic based on the inner IP ranges can be
easily scaled. The practical bottleneck would be the flow table
capacity and the switch’s processing power, not the separation
logic itself. In topologies with multiple UPFs, the approach
remains valid, simply by configuring the rules to direct each
slice to the corresponding UPF. Managing dynamic scenarios,
such as handover and user mobility, would require integration
with a dynamic control plane (such as SDN networks) to
update the switches’ rules in real-time.

VI. CONCLUSIONS

This work addressed the challenge of effectively imple-
menting network slicing in the 5G transport domain. In this
scenario, the absence of clear standards and the encapsula-
tion of user plane traffic in GTP tunnels without explicit
slice identifiers hinder end-to-end isolation, especially when
multiple slices share the same UPF instance. To overcome

these limitations, we propose using P4-programmable switches
capable of performing deep packet inspection and dynamically
segmenting traffic from different network slices based on the
UE’s internal IP addresses directly in the transport data plane.

Indeed, the experimental validation in an environment com-
bining Free5GC, UERANSIM, Kathard, and BMv2 switches
demonstrated the feasibility of slice-aware forwarding in 5G
transport, even with a single UPF. The results indicate that,
by parsing GTP-U headers and using the inner IP address as
a forwarding key, the approach successfully segregated the
traffic of eMBB and URLLC slices via independent paths.
Performance was maintained within the configured limits, with
average latencies of approximately 11 ms for eMBB and 2 ms
for URLLC under moderate load. Additionally, CPU usage
on the forwarding switches (S2, S3, S4) leveled off due to
their rate caps, while the P4 logic added approximately 10%
processing overhead on the inspection switch (S1) compared
to an unprogrammed counterpart. Future work will explore
scenarios with more slices and shared UPFs, as well as inte-
grating dynamic orchestration APIs so that paths and policies
can automatically adapt to changing traffic demands.
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