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Data-Constrained Semi-Supervised Approaches for
Optical Network Fault Detection
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Abstract— With the emergence of 6G and IoT systems, it
becomes crucial to correctly detect faults in optical networks
to guarantee access to these vital systems. Although machine
learning approaches show promise, most demand large datasets,
often scarce in practice, posing a significant challenge for model
deployment. In this work, we evaluate three semi-supervised
learning approaches specifically selected for their complementary
strengths in data-scarce scenarios: Principal Component Analysis
(PCA) for its noise-resistant dimensionality reduction, One-Class
SVM (OCSVM) for its robust boundary learning with limited
normal samples, and Hierarchical Clustering (HC) for its adapt-
ability to network operation patterns. All models are trained
exclusively on normal operation data and progressive data
reductions to assess their performance in resource-constrained
scenarios. Experimental results using optical testbed telemetry
data show that PCA, OCSVM, and HC achieve accuracies of
93%, 91.91%, and 74.31%, respectively, when trained with only
5% (544 samples).

Keywords— Optical Networks, Machine Learning, Failure De-
tection, Reduced Training Data.

1. INTRODUCTION

As several data-hungry online applications (e.g., 6G sys-
tems, generative Al-driven applications) are strongly depen-
dent on the ultra-high transmission capacity of optical net-
works, ensuring their reliability becomes critical to fulfilling
practical requirements [1]. This shift elevates reliability from
a desirable feature to a fundamental operational necessity,
as modern digital infrastructure must deliver uninterrupted
services to meet the increasing performance demands. The
importance of fault resilience becomes evident when consid-
ering the cascading effects of network failures (e.g., fiber cut,
dirty connector, equipment aging), which can lead to signif-
icant service disruptions and widespread economic impacts.
These systemic risks highlight the need for advanced detection
mechanisms to identify failures [2].

Traditional simplified threshold-based methods [3] struggle
to adapt to the dynamic and complex nature of modern optical
networks, often resulting in false alarms or delayed responses.
As a consequence, this motivates the adoption of Machine
Learning (ML) approaches, with Supervised Learning (SL)
methods demonstrating robust performance when sufficient
labeled failure data is available, as shown in [4]. In contrast,
Semi-supervised learning (SSL) addresses label scarcity by
training mostly on unlabeled normal data, augmented with a

Adryele Oliveira, Giovana Nascimento, Andrei Ribeiro, Fabricio Lobato,
and Jodo CWA Costa, Insitute of Technology, Federal University of Pard,
Belém-Pard, Brazil, e-mail: [adryele.oliveira, giovana.nascimento.silva, an-
drei.ribeiro] @itec.ufpa.br, [frl, jweyl]@ufpa.br; Moisés F. Silva, Los Alamos
National Laboratory, Los Alamos-NM, USA, e-mail: mfelipe@lanl.gov

small set of labeled samples. Thus, it is ideal for fault detection
when anomalies are rare but normal operation data is abundant.

However, beyond the inviability of failure data, a critical
challenge in optical network management is the limited avail-
ability of training data during the initial deployment of fault
detection systems. Operational networks frequently encounter
scarce historical data, creating fundamental constraints for ML
applications. This data scarcity stems from the rarity of labeled
failure events (costly to obtain) and the rapid obsolescence
of older datasets due to changing network conditions. Conse-
quently, reducing the required training data volume becomes
particularly relevant for optical networks. These limitations
have motivated the adoption of SSL-based approaches, such
as Principal Component Analysis (PCA), One-Class Sup-
port Vector Machines (OCSVM), and Hierarchical Clustering
(HC), that can perform effective fault detection in resource-
constrained environments. They are advantageous not only for
not requiring labeled failure data, but also for establishing
robust operational baselines, even when trained on low-data
regimes [5].

In that regard, in this work, we compare the failure detec-
tion performance of three SSL techniques, named as PCA,
OCSVM, and HC, under progressively reduced training data.
In addition to implementing fault detection in resource-limited
scenarios, the analyses contribute to the model deployment of
each model in these scenarios.

II. THEORETHICAL BACKGROUND
A. Principal Component Analysis

PCA is a widely used technique in ML and statistics for
dimensionality reduction and data visualization. It can reduce
the data dimensionality by transforming it into a new coordi-
nate system, where the variables are uncorrelated, orthogonal,
and ordered by the amount of variance they capture [6]. This
is achieved by finding the eigenvectors and eigenvalues of the
covariance matrix.

In general, given a dataset X with n observations and m
variables, the first step in PCA is to center the data. This
is done by subtracting the mean of each variable from the
respective variable values. This process ensures that the new
coordinate system is aligned with the directions of maximum
variance in the data rather than being centered on the means
of the variables. The centered data matrix is denoted as X',
from which the covariance matrix is computed. Each element
of this matrix represents the covariance between pairs of
variables, forming a square symmetric matrix. The eigenvector
v of a covariance matrix A in PCA is found by solving the
characteristic equation:
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where A is the eigenvalue corresponding to v. Eigenvalues A
are obtained by solving the determinant equation:

det(A — AI) = 0. )

where I is the identity matrix. After finding the eigenvalues,
the corresponding eigenvectors are estimated by substitution
into the characteristic equation. PCA then calculates eigenvec-
tors vy, Vo, ... Vp and eigenvalues A, Ao, ..., A, of A. These
eigenvectors form the new basis vectors of the transformed
coordinate system.

Finally, PCA selects a subset of the eigenvectors, known
as principal components (PCs), corresponding to the k largest
eigenvalues. These PCs represent the most important direc-
tions of variation in the data. The optimal number of PCs
k is typically selected by analyzing the explained variance
ratio, which quantifies the amount of information that each
component retains from the original data [7].

B. One-Class Support Vector Machine

Support Vector Machine (SVM) is an ML technique used for
classification and regression problems, and is widely applied
in fault detection due to its strong generalization capability
in handling nonlinear data effectively [8]. One-Class SVM
(OCSVM) is a variation of SVM designed to train using only
positive information (normal data). As a kernel-based method,
given training data X = {x1, X2, ...,X)}, a compact subset of
R", the algorithm maps them into a higher-dimensional fea-
ture space H (®(x) : X — H) via a kernel function f. In this
H dimension, a maximum margin hyperplane (w - ® (x;) = p)
defined by the support vectors separates the data from the
origin. So, the training data is the first class, and the origin
is the only member of the second class. To achieve this
separation, a quadratic programming problem must be solved

[8]:

F(a) = min 121 . (3)
2 vn —

subject to w - ® (x3) = p — &, & = 0. Normal data are con-

tained within this high-density region inside the hyperplane w

and equal to +1 by the function f, while the anomalies are in

the sparse region and equal to -1.

C. Hierarchical Clustering

Clustering is the process of merging data into groups based
on similarity. Each cluster contains samples that are highly
similar to each other (high intra-cluster similarity) and sig-
nificantly different from samples in other clusters (low inter-
cluster similarity). Among the various clustering approaches,
Hierarchical Clustering (HC) is a technique that builds a
multilevel hierarchy of clusters. HC has two main approaches
which define how this hierarchy will be formed: bottom-up
(agglomerative clustering) and top-down (divisive clustering)

[9].

In agglomerative clustering, the algorithm starts by merging
single-point clusters. At each step, it then merges multipoint
clusters with either single-point or multipoint clusters, contin-
uing until a single group containing all the data is formed,
creating a binary tree structure called a dendrogram. The user
selects the number of clusters and specifies where the binary
tree will be divided. The dissimilarity between clusters is de-
termined by three main linkage criteria: average link (measures
the average distance between all pairs), single link (defined
as the distance between the two closest members of each
group), and complete link (defined as the distance between
the two most distant pairs). In practice, the most commonly
used method in the literature is average link clustering [9],
calculated as follows:

davg(G,H) =

LSS, )

nen
GU"H icGicH

where ng and nyy are the number of elements in groups G
and H. After inducing a clustering of a given size, the centroid
of each cluster is calculated based on the Kernel Density
Estimation (KDE), given by:

ﬁ—i;m(a:xi), )

where bandwidth h determines how smooth the density esti-
mate will be, and kernel kj, defines the shape of the smoothing
function.

III. FAILURE DETECTION APPROACH

Fig. 1 presents the complete workflow of the proposed
approach, encompassing both training and testing phases.
Since the method operates in an SSL manner, only data from
normal network operations are used during the training phase.
To assess how the availability of data impacts the performance
of the models, the training is performed by varying data
reduction percentages - 100%, 80%, 60%, 40%, 20%, 10%,
5%, 1%, 0.5%, and 0.1%. As a result, it is possible to analyze
the changes in classification accuracy under limited training
conditions.

Firstly, by learning hidden patterns from this data, the
models picture the inherent characteristics of normal condi-
tions. In the OCSVM and HC models, Failure Indicators (FIs)
are generated (as reconstruction errors in PCA, distances to
centroids in HC, and distances to support vectors in OCSVM),
and anomaly thresholds are established based on the FI values
obtained from the training set, ensuring that only significant
deviations from normal patterns trigger fault detection. In
contrast, the PCA model is trained to reconstruct this data
in their output back to the original feature space, m, after
reducing to the £ PCs. The aim is to minimize the MSEs,
which measure how accurately the data was recreated. At the
end of training, MSEs are typically small, and any remaining
variances are considered acceptable.

During the testing phase, consisting of both normal and
anomalous data, the Fls are calculated, which quantify how
much a test sample deviates from the learned representation
of normal behavior. A sample is classified as a failure if at
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Fig. 1: Overview of the proposed approach.

least one of its FIs exceeds the threshold defined in the training
phase; otherwise, it is considered normal. In general, OCSVM
and HC FIs are computed as the Euclidean distance between
each test sample and a set of reference points derived during
training. These reference points differ depending on the model:
in the OCSVM, they correspond to the support vectors that
define the decision boundary of normal data; in the HC model,
they represent the density peaks of each cluster. On the other
hand, PCA computes the reconstruction errors and compares
them to the given threshold value for actual failure detection,
created based on a chosen percentile value that limits the
MSE:s of the sorted vectors.

IV. RESULTS

A. Experimental Setup and Parameter Definition

80 km

80 km 80 km
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Fig. 2: Optical network testbed.

To evaluate the proposed approach, a publicly available
dataset from GitHub was employed, which is based on the
telemetry described in [10]. The monitoring system, as shown
in Fig.2, includes two Ericsson SPO 1400 devices, one Wave-
length Selective Switch (WSS), and four EDFA amplifiers. All
the EDFA amplifiers are controlled via SPO devices (amplil
and ampli2 are controlled by SPO-Tx, while SPO-Rx controls
ampli3 and ampli4) and present a configurable gain in the
range 15-25 dB, with output mute power of 0.4 dBm. All
the amplifiers are configured in constant gain mode, with a
gain value that allows each span to be entered with 0 dBm of
optical power. Each SPO is equipped with a 100 Gb/s Optical
Transport Network (OTN) muxponder (installed at slot 18)
with a DWDM optical line (port 11) and 10 tributary ports.

The output of the first SPO (SPO-Tx) has been attached to a
WSS, which is then attached to a multi-span link over a 10
dB attenuator. The optical link between the SPO-Tx and SPO-
Rx consists of three spans, each spanning 80 km. The data is
collected every 3.5 seconds over 10 hours.
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Fig. 3: Features distributions.

In the first 8 hours, two normal operation conditions were
simulated, as shown in Fig.3: a stationary normal behavior
during the first 6 hours, and a noisy normal behavior in the
remaining 2 hours by randomly changing the attenuation in
the range from O to 18 dB. In the remaining 2 hours, the
same behavior as during the last 8 hours is simulated, but
with a 25 dB attenuation added every 40 seconds, which puts
the network in a failure condition for 10 seconds. Due to
missing values in the raw dataset, an interpolation technique
was applied, resulting in a final dataset of 13,948 samples.
The dataset was partitioned into training and testing sets, with
the first 80% (10,884 samples) of the data used for training
and the remaining 20% (3,064 samples) reserved for testing.

The proposed approach initially trains each ML technique
using 100% of the available training data to establish a base-
line performance. Then, to investigate the impact of reduced
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training data on model performance, progressively decreased
the number of training samples by randomizing the dataset and
selecting subsets corresponding to 80% (8,707 samples), 60%
(6,530 samples), 40% (4,353 samples), 20% (2,176 samples),
10% (1,088 samples), 5% (544 samples), 1% (108 samples),
0.5% (54 samples), and 0.1% (10 samples) of the original
training set. This systematic reduction allowed to observe the
gradual changes in classification performance for a constant
number of test data (3,064 samples). The performances of the
models are evaluated using accuracy, Type I and Type II error
indications.

Moreover, the randomization process ensured that the sub-
sets included a balanced amount of samples from both sta-
tionary and noisy normal operation conditions to maintain the
balance of the training process. Each technique is configured
with specific parameters to optimize the anomaly detection
performance while maintaining computational efficiency.

Several trials were performed based on the best config-
uration of each model. For the PCA model, the input di-
mensionality was reduced to a single principal component
(k=1), capturing the most significant variance pattern in the
EDFA input power measurements. Meanwhile, the OCSVM
implementation used an RBF kernel, where the parameter
v was set to 0.002 to control the tightness of the decision
boundary around normal operation data, and the parameter ~y
was fixed at 1.0 to determine the influence radius of each
support vector. HC adopted an agglomerative approach for
the clustering component with average linkage and 8 clusters,
determined through silhouette analysis. KDE with Gaussian
kernels (h=0.01) identified density peaks within each cluster.
A detection threshold was established at the 99th percentile
of the error distribution from the training set, classifying any
sample exceeding this boundary as a potential failure.

B. Comparison Results

In this subsection, the impact of training data availability
on failure detection performance is analyzed. According to the
results in table I, it can be seen that OCSVM maintains a low
Type II error as the training data is reduced; however, its Type
I error increases significantly, showing the highest overall Type
I error compared to the other models. Furthermore, it is evident
that OCSVM performs better when a larger amount of training
data is available. Regarding HC, it presents the weakest overall
performance across all training data percentages and generally

Training samples: 54 (0.5%)

the highest Type II error rates. Despite outperforming OCSVM
in 1% and 0.5% training data scenarios, indicating that even
though it can be competitive, its high sensitivity to data volume
still limits its suitability for practical deployment where both
error types are critical.

Training PCA HC OCSVM
data (%) Type I (%) | Type (%) | Type I (%) | Type I (%) | Type I (%) | Type II (%)
100 3.40 3.16 6.7559 2.611 1.1423 3.3616
80 1.86 333 6.7559 2.611 1.2402 3.2963
60 0.70 3.56 6.9191 2.5783 3.2311 3.4269
40 0.70 3.53 3.0352 22.1606 2.3499 3.3616
20 0.70 3.53 2.154 21.8995 3.1658 3.3943
10 3.59 3.46 4.047 21.8668 1.8603 3.1332
5 3.69 3.30 3.8512 21.8342 5.3198 2.7742
1 6.04 3.17 2.6762 22.1279 35.7376 1.436
0.5 5.02 4.98 37.5653 1.3708 58.2898 0.718
0.1 64.09 0.62 73.3029 0.1305 73.5313 0.1305

Training samples: 54 (0.5%)

TABLE I: Percentile of erros for PCA, HC, and OCSVM. Bold
values indicate the best performance at each training data size.

The high Type I errors (>70%) observed for all methods
at 0.1% training data (10 samples) demonstrate a clear data
scarcity threshold. At this minimal data volume, models clas-
sify most samples as anomalies due to insufficient normal be-
havior characterization. This range was intentionally included
to test the absolute lower limits of PCA, demonstrating that
even with just 10 samples, it maintains reasonable Type II error
rates (0.62%) while Type I errors escalated. This behavior
suggests that PCA is highly sensitive to outliers in the test
phase. However, in practical implementations, one must con-
sider that high false alarm rates could increase the operational
demands regarding network inspection. The sharp performance
improvement at 0.5% data (Type I errors dropping to 5.02% for
PCA) suggests this is a more realistic trade-off for operational
deployments. At the same time, the 0.1% case serves primarily
to establish experimental performance boundaries.

Accordingly, Fig. 4 illustrates the performance of each
model under data scarcity conditions, plotting the failure in-
dicator over time. The training data set (purple) consist solely
of normal data, while the testing data set includes data from
both normal (green) and failure conditions (red), with detected
failures (outliers) marked by yellow circles. Overall, the results
show PCA maintains superior separation, with most normal
samples below the established training threshold and failures
above it, indicating lower Type I and II error rates. In contrast,
OCSVM and HC exhibit poor discrimination, with excessive
failure samples below the threshold, reflecting higher Type
I errors despite equivalent training data. This demonstrates
their inability to properly distinguish anomalies from normal

Training samples: 54 (0.5%)
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Fig. 4: Failure detection performance of the proposed approaches.
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operation points to fundamental limitations in their one-class
classification capabilities under these experimental conditions.

C. Results Analysis

By analyzing Table I, Fig. 4, and Fig. 5, it is possible to
extract some insights about the limitations and capabilities of
the evaluated techniques. For instance, if the analysis were re-
stricted to larger dataset scenarios, such as 100%-80% training
data range, OCSVM would appear to be the best-performing
method. However, when evaluating performance across the
entire range of training data percentages, PCA demonstrates
greater overall stability and robustness, not only maintaining
a stable accuracy of approximately 90% throughout the range
down to 0.5%, but also showing the lowest percentile of
errors in 0.1% training data, demonstrating its resilience to
limited data. In contrast, HC shows gradual improvement and
reaches competitive accuracy levels only with larger datasets,
achieving its last high accuracy at 60% training data, its
outliers shown in Fig. 5, and afterward the accuracy stabilizes
around 70%.

Accuracy

0.44 —=— PCA (Principal Component Analysis)
OCSVM (One-Class SVM)
0.31 —e— HC (Hierarchical Clustering)

SO

SEE & & & s 2
S®E ¥ NN ~ ’ .

Training Data Percentual

Fig. 5: Fault detection accuracy of the compared models per
training data percentage.

From the above comparative test results, PCA demonstrates
superior stability with limited training data because its dimen-
sionality reduction approach fundamentally captures the most
significant variance patterns in the feature space, which tend
to remain consistent even with small sample sizes. PCA effec-
tively filters out high-frequency noise by projecting data onto
orthogonal principal components while preserving the low-
dimensional manifold that characterizes normal network oper-
ation. This noise resilience stems from the method’s reliance
on global covariance structures rather than local data density,
a property that makes it less sensitive to exact sample counts
compared to distance-based methods like HC or boundary-
sensitive approaches like OCSVM. Furthermore, the recon-
struction error metric naturally normalizes for data volume,
as it measures deviations relative to the dominant variance
directions learned during training. This explains why PCA
maintains about 90% accuracy down to 0.5% training data
while other methods degrade sharply, making it particularly
suitable for applications where historical fault data is scarce

but the fundamental physics of optical signal propagation (and
thus feature correlations) remain stable.

These results suggest that PCA is the most robust technique
for scenarios where data collection is constrained, ensuring
consistent performance even with a small number of training
samples. On the other hand, OCSVM proves to be effective
when larger datasets are available, and HC requires sufficient
data to achieve reliable failure detection.

V. CONCLUSION

In this work, three SSL-based approaches (PCA, OCSVM
and HC) are evaluated in reduced data scenarios. The compar-
ative study demonstrates that PCA emerged as the most robust
technique for optical network fault detection in conditions of
limited training data, maintaining 90% accuracy with just 0.5%
training data and minimal Type II errors, which are critical
for failure prevention. On the other hand, OCSVM achieves
peak performance (97.8% accuracy) with full datasets while it
degrades significantly below 10% training samples. HC proves
to be the least effective in low-data scenarios, requiring more
than 60% data to reduce Type II errors below 20%. The results
demonstrate that PCA is suitable for resource-constrained de-
ployments due to its noise-resistant dimensionality reduction,
while OCSVM remains a viable option when in scenarios with
abundant training data.
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