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Email: jddeus@uol.com.br

Luana Priscilla R. C. de Lima
UFERSA, Mossoró, RN, Br.
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Email: wilkencharles@gmail.com

Abstract—The integrated system of data transmis-
sion, encoding, modulation and block channels are pro-
jected in dependent ways with the purpose of getting
an integrated action from those elements, and the elim-
ination of additional devices with incompatibility treat-
ment, caused by inadequate choice of some those com-
ponents. In this system, the modulation and encoding
projects take place in topological spaces (Ω, d), where Ω
is Riemannian manifolds and d is a metric on Ω, which
the discrete memoryless channel Cm, like a graph, is
embedded. For each embedding Cm ↪→ Ω, it’s possible to
determine accurately a topological modulation project
on Ω, in the sense of knowing the decision regions
(or Voronoi’s regions) of each constellation signal. The
paper’s purpose is to identify topological projects of
modulation on surfaces for large constellations, mainly
the regular modulations. The procedures to obtain
these projects are based on the method of the current
graph developed by Gustin and Youngs and used in the
proof of Color Graph Conjecture by Heawood.

I. Introduction

In the model blocks of the integrated system (IS)
shown in Fig. 1, the combination m-ary input in the
modulator, the physical channel, and the n-ary output
in the demodulator are modeled as a discrete memoryless
channel (DMC), denoted by Cn. The modulation projects
which come from partitions of 2-cells embedding of the
complete graph Kn (associated to DMC [2]) in surface Ωi,
i = 1, 2, 3, 4.

Fig. 1. Model blocks of integrated system

In IS, the metric spaces are considered the same. The
objective of this approach is to obtain a system more
efficient than an integrated system with a traditional data
transmission, with the main blocks acting in a compatible

way, and providing a great number of options modulations
for the same channel. Topological parameters of efficiency
modulation are shown in Fig. 2. It’s known that the
efficiency of the modulation depends on the genus and
regularity degree α (number of regions of the same type),
additionally, it is shown in [2] that they still depend on the
number of edges of the regions and border components of
the surface. The identification of these parameters is very
important in order to know the IS performance.

Fig. 2. Proposal overview (Adapted [3])

The identification process consists in mapping each
region of the embedding and identifying the partition and
surface. The regions are mapped through orbital sequence
an orbital sequence which describes the order of the ver-
tices belonging to the closed curve that defines the bor-
der of the region. The identification methods of oriented
embedding in the complete graph Kn are presented for
n values relatively high and regular models of embedding
that get close to the maximum model of local regularity,
according to the topological parameters of modulation
efficiency related previously. Each embedding identified
in this work is a topological project of modulation for a
constellation with a large number of signals.

This work has the following structure: considerations
about the method of the current graph current graph and
examples of Kirchhoff’s Current Law ; the application of
the current graph in the process of embedding identifica-
tion of Kn followed by examples through a gear system,
a method described in an algorithm form; a proposal
of generating maximum and regular embeddings through
disturbances in the rotation of Kn; the results; and con-
clusions.



A. Current Graph

The existence of current graph will be analyzed in the
tetrahedron and triangular prism. It will be included in
this session, some definitions and main relationships used
in this work. A graph with p-vertices v1, · · · , vp and q-
edges e1, · · · , eq, will be denoted by G (p, q). The incident
arcs to vi ∈ G will be indicated by ei1 , · · · , eih , where h
is the degree of vertex vi, indicated by ◦ (vi) = h.. If each
edge of G contains an orientation (one arrow indicating
the positive direction), then G (p, q) is called an oriented
graph. The identification of the genus of an oriented surface
for embedding graph is given by:

χ(Ω) = 2− 2g if Ω ≡ gT (1)

where gT represents the oriented surface of genus g.

The current graph consists of a group Γ, graph G
drawing (not necessarily embedded) in the plane, and a
label function φ that associates each direct edge of G to
an element of Γ. The only requirement is that the inverse
arcs are associated to the inverse elements of Γ.

We say that a Kirchhoff’s Current Law (KCL) exists
on G (p, q) if the sum of the currents in each vertex
of G is equal to zero. The graph G with KCL and
label with different non-null elements of the additive
group Zq+1\{0} is called current graph. In the current
graph, current intensity assumes values in the set Λ =
{−q,−q + 1, · · · ,−2,−1, 1, 2, · · · , q − 1, q}, however, the
KCL on G shows only positive values (the negative values
are associated to opposed currents). More precisely, a
current law on G should satisfy the conditions of the
following linear system∑◦(pi)

j=1
ξ
(
eij

)
eij = 0, ∀i ∈ {1, 2, · · · , p} (2)

where ξ : Λij → {−1, 1} is the function signal defined by:
ξ(ek) = 1, if the direction of the arrow points toward vi,
otherwise, ξ(ek) = −1.

Particularly, the examples (1a) and (4a) in Fig. 3, show
that it’s possible to construct one KCL on a tetrahedron
and triangular prism, since there is one solution of the
system (2), S = (a1, a2, · · · , a2q), composed by 2q-tuple of
different elements in Λ.

Fig. 3 (1b) contains the current graph corresponding
to the rotation σ1 on tetrahedron; (1c) shows that the
circuits are: γ1 = (7, 12, 9), γ2 = (11, 4, 3), γ3 = (2, 5, 6),
γ4 = (8, 10, 1); therefore, a partition of the form 4R3; of the
Eüler characteristic, χ(Ω) = 4−6+2 = 0, thus, by equality
(1), the graph (1a) with the rotation σ1 is embedded in the
sphere, i.e., Ω ≡ S (homeomorphic to the sphere). In the
simplified form, this embedding is indicated by G(σ1) ↪→
S ≡ 4R3. In a similar way, it was concluded that the other
examples of embedding of the tetrahedron in (2) and (3)
are respectively: G(σ1) ↪→ T ≡ R3R9. Only these three
types of partitions were found coming from tetrahedron
embedding.

Fig. 3. Kirchhoff’s Current Laws, current graphs and circuits on
tetrahedron and triangular prism

The triangular prism embedding is given by G(σ) ↪→
2T ≡ R12, an important example of a maximal circuit. It
will be used to construct the minimal embedding of graph
K19.

1) Current Graph and Identification Process: The com-
plete current graph method can be found in [4]. We include
here only the main definitions.

A rotation of the vertex A of graph G is one oriented
cyclic order (or one cyclic permutation) for all the incident
arcs with A. A rotation (G, σ) is one rotation for each
vertex of G.

Often, it is customary to represent a graph G with
rotation in the plane in such a way that a clockwise
(or counterclockwise) reading of the arcs incident with a
vertex provides the rotation that vertex. Moreover, if the
reading is to be clockwise (or counterclockwise) the vertex
is represented by a small filled-in black (empty) circle such
as • (◦) [4]. In the following way, we can describe the
rotation of a graph (see Fig. 3).

2) Rotation Corresponding to a Minimal Embedding:
In this work, regular embedding is identified from distur-
bances in rotation corresponding to a minimal embedding.
It’s said that G ↪→ gT is the minimal embedding of graph
G in surface gT , if there is not an embedding of G in
g′T such that g′ < g. The rotation inducing exactly one
only circuit that is called circular rotation, for instance,
the rotation σ4 of the Fig. 3(4b).

Minimal embedding rotation of Kn is obtained from
a circular rotation P0, traveling once the 2q arcs of one
circular circuit of G(p, q), starting at the arc 1, i.e.:

P0 = (c0 = 1, c1, c2, · · · , cn), (3)

where n = 2q. In this case, P0 is considered the permuta-



tion of the vertex 0 de Kn, and for every i = 1, 2, · · · , n−1,
the permutation of the vertex i is considered the by adding
i on each element of P0:

Pi = P0 + i = (c0 + i, c1 + i, c2 + i, · · · , cn + i). (4)

If each circuit induced by a rotation σ for a graph
has length three, then it is called a triangular rotation.
A circuit of length three is sometimes called a triangle.
Suppose that G has no vertices of valence ≤ 1. Then,
there are no circuits shorter than triangles. Therefore
a triangular rotation of G is a maximal rotation [4]. A
maximal rotation corresponds to a minimal embedding.

II. Identification Process from Gear Systems

It is easy to construct the circuits of small graph embed-
ding and identify it immediately as is shown Fig. 3. In the
case of a large complex graph, the plane model is confused
and the identification of circuits is very hard. These ones
will be identified from a local rotation of vertices called
gear system.

The following remark is important because it defines
one partition above the surface on which the modulation
project is well defined as Hausdorff’s space (the union of
all regions is equal the whole space and the intersection
between two regions is always empty).

Remark 1: Let G(σ) ↪→ Ω ≡ ∪Ri be an embedding. If
σ has equal orientations in all vertices of G, then ∪Ri is a
Hausdorff’s space on Ω.

Note that the rotation σ1 on the tetrahedron of the Fig.
3 has: equal orientation in all vertices, ∪Ri = T , and
Ri ∩ Rj = ∅; as a result, the torus with the partition
∪Ri is a Hausdorff’s space. The fundamental step of the
identifying process is the mapping of the regions. The
partition and surface are obtained through Eüler charac-
teristic and equality (1). The region mapping depends only
on the local behavior of rotating vertices. The embedding
of interest is one that causes a partition of the type
Hausdorff’s space. Through the Remark 1 it must take
the same orientation for all the vertices. Particularly, it will
used in the clockwise orientation (•). The region’s mapping
will take place on a graphic scheme called gear system, as
shown in Fig. 4.

A. Identification Process K13

The rotation of a vertex of K13 contains 12 elements,
the same number of elements of Γ in the rotation (G, σ1)
of the Fig. 3(2b). As the tetrahedron doesn’t have cir-
cular rotation, let us take the circuits γ1 and γ2 of the
rotation (G, σ1), to compose the only circuit γ = γ1γ2 =
(2, 5, 12, 3, 11, 7, 8, 10, 9, 4, 1, 6) (operation known by amal-
gamated product) and to use it as P0 to obtain, through

formula (4), the rotation σ of K13:

0. 2 5 12 3 11 7 8 10 9 4 1 6
1. 3 6 0 4 12 8 9 11 10 5 2 7
2. 4 7 1 5 0 9 10 12 11 6 3 8
3. 5 8 2 6 1 10 11 0 12 7 4 9
4. 6 9 3 7 2 11 12 1 0 8 5 10
5. 7 10 4 8 3 12 0 2 1 9 6 11
6. 8 11 5 9 4 0 1 3 2 10 7 12
7. 9 12 6 10 5 1 2 4 3 11 8 0
8. 10 0 7 11 6 2 3 5 4 12 9 1
9. 11 1 8 12 7 3 4 6 5 0 10 2

10. 12 2 9 0 8 4 5 7 6 1 11 3
11. 0 3 10 1 9 5 6 8 7 2 12 4
12. 1 4 11 2 10 6 7 9 8 3 0 5

The gear system corresponding to the rotation σ is shown
in the Fig. 4. In this one, the integer i ∈ Γ, in the middle of
central circle, indicates the index of the vertex vi of K13;
j ∈ Γ on a arrow next to the circumference, indicates the
index of the vertex vj adjacent to the edge (vi, vj) in the
rotation of vi; and the pair k, s defines the sth element of
the kth orbital sequence.

Fig. 4. Gear system of rotation (K13, σ)

It is concluded that the gear system, the embedding of
the graph G ↪→ Ω is identified through the following:

Algorithm 1: If E(σ) is the gear system of rotation
(G(p, q), σ), then the ith orbital sequence of the embedding
G ↪→ Ω is given through the following steps:

1) Choose an adjacent vertex vj1 in rotation of vi
and write down, between the consecutive adjacent
vertices vj1 , vj1+1 of vi, the pair i, 1.

2) Find the adjacent vertex vj2 of vj1+1 equal to vi, and
write the pair i, 2 between the consecutive adjacent
vertices vj2 , vj2+1 of vj1+1.

3) In the mth step, find the adjacent vertex vjm of
vjm−1+1 equal to vjm−2+1, and write the pair i, k
between the consecutive adjacent vertices vjm , vjm+1



de vjm−1+1.
4) Continuing the constructing process, write the se-

quence τ of length d1 + 2, such that the last two
terms are the same as the first one, i.e.:

τ = (i, j1 +1, j2 +1, j3 +1, · · · , jd1−1, i, j1 +1). (5)

In this case, the orbital sequence γ1 = (i, j1+1, j2+
1, j3+1, · · · , jd1−1) defines the frontier of a region of
d1-edges, Rd1 , of the oriented embedding G(σ) ↪→ Ω.

5) Choose an adjacent vertex vt of vu in such a way that
(t, u) is not a sub-sequence of γ1, and repeat steps
1) through 4) to obtain the orbital sequence γ2 of
length d2. The process finishes when

∑k
i di = 2q,

and the embedding G(σ) ↪→ Ω ≡ Rd1Rd2 · · ·Rdk
is

obtained.

All the embeddings of this work are identified through
Algorithm 1 and the gear system. For example, the orbital
sequences of rotation (K13, σ) are given by:

1(0,1,4), 3(0,2,9,11,5,7,1,3,10,12,6, 8, 2, 4, 11, 7, 9, 3, 5, 12, 1,8,10,4,6),

2(0,6,1), 4(0,5,2), 5(0,12,5),6(0,3,12),11(0,4,8,12,3,7,11,2,6,10,1,5,9),

7(0,11,3),8(0,8,7),9(0,10,8),10(0,9,10),12(1,6,3),13(1,12,4),14(1,9,8),

15(1, 11, 9), 16(1, 10, 11), 17(1, 2, 5), 18(1, 7, 2), 19(2,10,9), 20(3, 9, 4),

21(2, 12, 10), 22(2, 11, 12), 23(2, 3, 6), 24(2, 8, 3), 25(2, 7, 4),26(3,4, 7),

27(3, 8, 5), 28(3, 11, 10), 29(4, 12, 11), 30(4,5, 8), 31(4,10, 5),32(4,9,6),

33(5, 6, 9), 34(5, 11, 6), 35(5, 10, 7), 36(6, 7, 10).

Note that, rotation of (K13, σ) circuits is composed by
42 regions: 39 triangular, one of 13 and the other of 26
edges, this way, an embedding of the form K13(σ) ↪→
13T ≡ 39R3R13R26. It is an embedding close to minimal
and can be used for a project of modulation on the surface
13T , for a constellation of 41 signals, or on the surface
with two border’s components 13T2, for a constellation of
39 signals of the type geometrically uniform.
The procedures above show that the rotations of the

tetrahedron σ1 and σ3 generate the embedding described
in Table I. As σ3 possesses the maximum circuit of the
tetrahedron, observe that it is on the surface of smaller
genus among generators circuits as shown before in Fig. 3.

TABLE I
This embedding comes from tetrahedron rotations σ1 and σ3

Rotation P0 Irregular Regular

σ1 (7,12,9,11,4,3,2,5,6,8,10,1) 26T ≡ 14R3R104 26T1 ≡ 14R3

σ3 (2,5,6,4,1,8,10,9,11,7,12,3) 19T ≡ 26R313R6 19T13 ≡ 26R3

1) Minimal Embedding of K19: The vertex’s ro-
tation of K19 has 18 adjacent vertices, a number
equal to twice the number of edges on the trian-
gular prism Π3. Using (4) to construct the rotation
(K19, ϱ) from circular rotation in Fig. 3(4c), P0 =
(1, 15, 12, 14, 18, 10, 16, 4, 5, 17, 6, 9, 8, 2, 7, 3, 13, 11), we ob-
tain a minimal embedding K19(σ

′) ↪→ 20T ≡ 114R3

(identified through Algorithm 1). This is a unusual ex-
ample of triangular circuit and regular modulation for a

constellation of 113 signals of the geometrically uniform
type on 20-tory.

III. Rotation disturbance of Kn

The aim is to investigate the effect of few alterations in
the rotation of a minimum embedding of Kn to obtain a
regular modulation.

Definition 1: A disturbance of a (Kn, σ) rotation is any
permutation of the vertex’s rotations of Kn. Two partic-
ular cases will be considered disturbances of the vertex j
of Kn:

d1: permutation of two isolated adjacent vertices:

j (· · · aih · · · aik · · · ) → j (· · · aik · · · aih · · · ) ;

d2: permutation of k consecutive pairs of vertices:

j (· · · aihai,h+1ai,h+2ai,h+3 · · · ai,h+k-1ai,h+k · · · ) →
j(· · · ai,h+1aihai,h+3ai,h+2 · · · ai,h+kai,h+k-1 · · · ).

Concerning to the rotation’s disturbances the following
results were enunciated and demonstrated in [2].

Proposition 1: Let (Kn, σ) be a minimal oriented em-
bedding of complete graph Kn, then:

1) d1 produces two hexagonal orbits: γ1=(j, aik, ai,h+1,
j, aih, ai,h−1) and γ2 = (j, ai,k−1, aih, j, ai,k+1, aik);

2) d2 produces an orbit with 3 + 6k arcs: R3+6k = (j,
ai,h+1,aih, j,ai,h+3, · · · , ai,h+k, ai,h+k−1, j, ai,h+k+1,
ai,h+k−3, ai,h+k, j, · · · , j, aih, ai,h+3, j, ai,h−1).

Theorem 1: Let Rs, Rt, Ru, Rv be the different neigh-
boring regions, the vertices aih, aik not consecutive but
adjacent to vertex j of Kn. Then disturbance d1 produces
two regions R

′

i+u and R′′
j+v with i + u e j + v edges,

respectively.

Theorem 2: The disturbance d2 transforms the 2k + 1
affected regions Rs1 , Rs2 , · · · , Rs2k+1

in only one region

with a number of edges equal to
∑2k+1

i=1 si.

A. Regular Modulations Via Disturbances

Proposition 1 will be applied at the minimal embedding
K13 ↪→ 8T ≡ 51R3 + R6 to generate regular modulation
with regions of 3k edges.

Proposition 2: [2] If d1, d2 are properly combined, then
maximal partition (K13, σ) (minimal embedding) produces
regions of 3k edges.

The purpose of Proposition 2 is to obtain regular mod-
ulation models as those related in Table II.

In Table II, the column Ωr indicates the surfaces with
borders where they are the respective regular modula-
tions related in the column G.U. (geometrically uniform).
Observe that 29T has maximum genus, 50R3 shows the
largest number of signals (regions), 5R24 has the regions
with the largest number of edges, and 6R3 is in the
surface with the largest number of border components
19T23. These are the models that maximize the topological
elements that make influence the modulation performance.



TABLE II
Regular Embedding of K13 with regions R3k, k = 1, 2, · · · , 8

Borderless surface Surface with board
Ω Irregular Ωr G.U.
8T 50R3R6 8T1 50R3

22T 17R62R32R92R15 23T6, 23T21 17R6,2R3,2R9,2R15

19T 23R66R3 19T6, 19T23 23R6, 6R3

23T 13R95R32R6R12 19T8,19T16,19T19 13R9, 5R3, 2R6

23T 15R95R3R6 23T6, 23T16 15R9, 5R3

24T 15R9R123R3 24T4, 24T16 15R9, 3R3

24T 11R128R3 24T8, 24T11 11R12, 8R3

26T 9R155R3R6 26T6, 26T10 9R15, 5R3

28T 7R18R213R3 28T4, 28T8 7R18, 3R3

28T 6R21R10R113R3 28T5, 28T8 6R21, 3R3

29T 5R24R22R82R3 29T4, 29T7 5R24, 2R3

B. Regular Modulations From K19 Embedding

The minimal embedding of (K19, ϱ) in Subsection II-A1
was constructed from an unedited circular rotation of
the triangular prism in Fig. 3(4b). It is an example of
a triangular rotation that has the property of generating
modulations with a high degree of regularity. Although,
it takes more time to identify the embedding of K19, the
difficulty of manipulating the Algorithm 1 is the same for
each graph. Due to time constraints only the three exam-
ples of embedding were identified in Table III, however,
any rotation of K19 can be identified trough Algorithm 1.

TABLE III
Regular Modulation of K19 with regions R3k, k = 1, 2, 3

Maximum Borderless surface Surface with border

regularity Ω Partition Ωr G.U.

114R3 ↪→ 20T 20T 114R3 (G.U.) − −
56R62R3 ↪→ 48T 46T 52R610R3 46T10, 46T52 52R10, 10R3

38R9 ↪→ 58T 56T 34R94R64R3 56T8,56T38 34R9,4R6,4R3

In the first column of Table III we include, for com-
parison effect, the maximum regularity model of each
case. Note that the only minimal embedding related in
Table III reached the maximum regularity model. The
other two embedding differ in their respective models of
maximum regularities only in 2 units of genus and of
4 regions with the largest number of regularities. These
embedding examples represent the regular modulations
identified in this work with the largest number of signals:
in the borderless surface 20T with 114 signals and Vorony’s
triangular regions; in the surface with borders 46T with 56
signals and Vorony’s hexagonal regions; and in the surface
with borders 56T with 34 signals and Vorony’s regions of 9
edges. We remember that these examples were constructed
with a minimal effort, using Proposition 2, gear system and
Algorithm 1.

IV. Conclusion

The purpose of this work is the development identifica-
tion methods of oriented embedding of the complete graph

Kn, for n values relatively large, according to efficient
topological parameters of modulation given by relations
of overview proposal (see Fig. 2).

The current graph method used in the identification
process shows that it is very efficient. In spite of the
calculations and constructions of the identification process
having been done manually (no programming routines),
results were obtained from regular embedding of complete
graph in cases which the complexity is very high. The ap-
plication of Algorithm 1 in the identification of topological
projects modulation practically has no limits. It can be
used comfortably in the gear system of any kind of a graph,
independent of the amount of vertices.

Regarding the method of the vertices disturbances, its
efficiency was confirmed in the production of maximal
embedding through permutations of columns, and it was
shown in Proposition 2 that it is possible to combine
the two types of disturbances d1 and d2, appropriately,
in a maximal rotation of the graph, to produce regular
modulations with regions of 3k-sides, k = 1, 2, 3, · · · . The
method of the disturbances can be used to produce other
types of topological projects of regular modulations, and it
is not only applied to maximal rotations, but other types
can be used, besides the minimal one.

The results of this work provide precise answers ac-
cording to the form and existence of topological projects
of modulations, a fundamental stage of the project in
an integrated system of data transmission. This is the
information which validates and rewards the effort on the
part of the planner, in the search and elaboration of more
efficient modulation projects in the field of the Riemannian
manifolds.
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