
XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

An Experimental O-RAN Environment for

Evaluating AI-Driven RAN Control
Lucas Rodrigues, Elen Gomes, Diego Bezerra, Djamel F. H. Sadok and Glauco Gonçalves

Abstract— Open RAN (O-RAN) aims to reduce operational
costs and improve interoperability by promoting disaggregated
and virtualized Radio Access Network architecture. In this
context, development of new xApps is limited by the capabilities
of underlying experimental platforms. This paper presents an
experimental environment integrating srsRAN and OSC-RIC,
two widely used open-source O-RAN software components, and
extends srsRAN to expose additional performance metrics via
the E2 interface. Such extension enables the periodic reporting
of detailed KPIs from the PHY and MAC layers, enhancing
RAN observability and offering a cornerstone for evaluating new
xApps for closed-loop control and adaptive optimization in 5G
networks.

Keywords— O-RAN, 5G Beyond, Near-rt-RIC, Network Man-
agement.

I. INTRODUCTION

Significant advances and the growing demand for enhanced

connectivity in wireless communications have resulted in

new cost and management challenges for network operators,

increasing demands for flexibility, scalability, and intelligent

automation [1]. In this context, the Open Radio Access Net-

work (O-RAN) has emerged as an alternative to overcome

current RAN limitations.

Based on disaggregation and virtualization, the O-RAN

paradigm enables multi-vendor interoperability, reducing

maintenance and operational costs [2]. It also opens the door

to data-driven and closed-loop control through the deployment

of xApps, microservices that can operate in near-real-time [3],

hosted by the RAN Intelligent Controller (RIC).

However, practical development and testing of xApps re-

main limited by the lack of accessible and flexible experi-

mental environments [1]. Bridging this gap is essential to ac-

celerate research, validate optimizations, and demonstrate the

feasibility of intelligent RAN control in real-world scenarios.

This paper addresses this challenge by presenting a dis-

tributed and fully virtualized experimental environment that

integrates the srsRAN Project (for gNB and UE simulation),

the O-RAN Software Community RIC (OSC-RIC), and the

Open5GS 5G Core. Furthermore, we propose and implement

custom extensions to the srsRAN Project stack to support the

collection of additional RAN metrics via the E2 interface,

which are essential for enabling RAN monitoring and xApp

control loops.

By showcasing the deployment of an xApp focused on

energy consumption analysis, this work presents a reusable

Lucas Rodrigues, Elen Gomes and Glauco Gonçalves are part of LASSE,
UFPA, Belém-PA. Diego Bezerra and Djamel Sadok are part of GPRT,
UFPE, Recife-PE. E-mails {lucas.lima.rodrigues, elen.cristina}@itec.ufpa.br,
glaucogoncalves@ufpa.br, {diego.bezerra, jamel} @gprt.ufpe.br.

experimental environment and demonstrates the potential of

O-RAN for intelligent resource management.

This work is organized as follows: Section II describes

the technologies used in this work. Section III describes

the limitations of srsRAN and the proposed extensions in

this work. Section IV describes the experimental environment

setup. Section V presents the results. Finally, Section VI

showcases the main findings and future research directions.

II. SRSRAN & OSC-RIC

The O-RAN paradigm introduced open interfaces, flexibil-

ity, and intelligence into traditionally closed and monolithic

RAN architectures [1]. With this in mind, open-source projects

such as srsRAN and OSC-RIC have emerged as essential

tools for researchers and developers, enabling the prototyping,

testing, and deployment of disaggregated RAN components in

a virtualized environment.

srsRAN is a fully open-source software suite compliant

with 3GPP and O-RAN Alliance specifications1. It provides a

collection of 4G and 5G RAN components, including support

for User Equipment (UE), core network, eNB, and gNB.

Therefore, it allows the deployment of an end-to-end, robust

network environment. In alignment with the specifications of

the O-RAN Alliance, srsRAN also supports the commonly

used 5G functional 7.2x split, which decomposes the gNB

into O-RU (Radio Unit), O-DU (Distributed Unit), and O-CU

(Centralized Unit). By dividing the physical layer (PHY) into

a high-PHY and a low-PHY, this split is designed to achieve a

balance between flexibility, cost, and performance. To manage

software complexity, srsRAN offers containerized solutions,

including an Open5GS bundle2 that enables the seamless

integration of core network functions with radio components.

OSC-RIC plays an important role in enabling intelligent

control and management of network resources. It introduces a

standardized framework and interfaces for deploying near-real-

time RIC (Near-RT-RIC) unit, in order to achieve a data-driven

closed-loop control over radio resources. It is an essential ele-

ment for monitoring and managing RAN elements. The Near-

RT RIC can host multiple microservices known as xApps,

performing services based on data extracted from E2 nodes.

An xApp can operate control-loops functions within 10 ms and

1 s intervals allowing faster control over network functions [1].

Enforcing RRC policies over the RAN components, xApps

work by collecting exposed data from E2 nodes.

1Available at: https://docs.srsran.com/en/latest/. Accesed
on May 05, 2025.

2Available at: https://github.com/srsran/srsRAN_Project/
tree/main/docker/open5gs. Accessed on May 5, 2025.

XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

The OSC-RIC I-release minimal version simplifies the de-

velopment and deployment of xApps by providing a Docker

container with the xApp Python Framework, which houses

the commonly required features for xApps. These include

built-in and essential support for communication with the RIC

Message Router (RMR) and the Shared Data Layer (SDL).

III. SRSRAN E2 INTERFACE: LIMITATIONS AND

EXTENSIONS

srsRAN is a widely adopted and actively maintained

open-source tool for 5G research and prototyping. Despite

its popularity, the current implementation remains limited

in the diversity and granularity of metrics exposed via

the E2 interface. The E2SM-KPM service model supports

the periodic reporting of a limited set of standardized

performance indicators [4]. Among the supported metrics are

downlink and uplink throughput per user (DRB.UEThpDl,

DRB.UEThpUl), RLC packet drop rate in the downlink

(DRB.RlcPacketDropRateDl), PDCP packet success

rate (DRB.PacketSuccessRateUlgNBUu), and transmit-

ted SDU volume (DRB.RlcSduTransmittedVolumeDL,

DRB.RlcSduTransmittedVolumeUL). Furthermore,

metrics such as channel quality indicators are currently

included as placeholders and, according to the documentation,

are expected to be deprecated in future releases3.

Besides, E2 interface does not expose indicators such as

per-layer latency, HARQ retransmission statistics, modula-

tion and coding scheme (MCS) usage, handover attempts,

signal-to-interference-plus-noise ratio (SINR), or UE ve-

locity. Furthermore, the measurement reporting component

(e2sm_kpm_du_meas_provider.cc) does not include

provisions for incorporating more detailed internal metrics.

For this work, we provided a set of custom measure-

ment retrieval functions to expose new metrics for collec-

tion via the E2 interface4. These additions allowed periodic

reporting of a set of Key Performance Indicators (KPIs)

beyond the default metrics. The implemented functions in-

clude: get_pci (Physical Cell ID, unitless), get_rnti

(UE identifier, unitless), get_mcs_dl and get_mcs_ul

(modulation and coding scheme for downlink and uplink,

unitless), get_brate_dl and get_brate_ul (bitrate per

direction in kbps), get_nof_ok_dl, get_nof_nok_dl,

get_nof_ok_ul, and get_nof_nok_ul (number of suc-

cessful and failed transport blocks, unitless), get_bsr

(Buffer Status Report in bytes), get_dl_bs (down-

link buffer size in bytes), get_ta (Timing Advance in

nanoseconds), get_phr (Power Headroom Report in dB),

get_pusch_snr (uplink SNR on PUSCH in dB), and

get_ri (Rank Indicator, unitless).

New metrics can be added to E2SM-KPM reports by extend-

ing the measurement provider and registering new Measure-

mentRecord entries with custom MeasTypeName identifiers.

To incorporate these metrics, each getter function was properly

3Available at: https://docs.srsran.com/projects/project/
en/latest/tutorials/source/near-rt-ric/source/index.

html. Accessed on May 5, 2025.
4Available at: https://github.com/gt-oiran/srsran Accessed

on May 5, 2025.

linked to the internal state of the srsRAN gNB, collecting

runtime information from the PHY and MAC layers. These

were registered as custom measurement types and included

in the E2SM-KPM message assembly process. This extension

enhances the observability of radio link conditions and user-

specific performance, enabling the development of xApps ca-

pable of proactive RAN control, fine-grained failure detection,

and adaptive, context-aware optimization.

IV. IMPLEMENTATION

The experimental environment was deployed across two

bare-metal servers both running Ubuntu 22.04. Server-1,

equipped with an Intel Core i7-12700 CPU @ 2.10GHz and

16GB of RAM, hosted the srsRAN gNB, acting as the base

station in the network setup. Server-2, powered by an Intel

Core i7-14700 CPU @ 2.10GHz and 16GB of RAM, runs the

emulated srsRAN UE as well as containerized instances of

Open5GS and OSC-RIC i-release minimal version.

The official srsRAN Project repository on Github5 and

[5] provide a comprehensive and detailed tutorial, including

building tools and software dependencies. It is essential to

follow these installation instructions carefully to ensure proper

configuration and compatibility with both hardware and soft-

ware.

To ensure a direct connection between the two servers, we

assign static IP addresses to each server’s network interfaces,

which are configured in the same subnet. Furthermore, firewall

rules can be defined to ensure proper and secure connection

between the various services.

After building the srsRAN projects, the next step is to

set up communication between the components. This needs

modifying the gNB and UE YAML configuration files. In

the gNB configuration, the IP address responsible for binding

traffic to the AMF must be defined by setting the bind_addr

parameter within the cu_cp section to Server-2’s IP address.

Additionally, to establish communication between the gNB

and the UE, the device_args field must be correctly

configured in both YAML files.

To integrate with the Near-RT RIC, specific modifications

must be made in the e2 section of the gNB YAML file. The

addr field should be set to Server-1’s IP address, while the

bind_addr should correspond to Server-2’s IP. Additionally,

in the OSC-RIC deployment, in the docker-compose file, the

ports section under the e2term service must be uncom-

mented to ensure that the necessary E2 interface ports are

properly exposed.

Finally, a static route must be added to establish communi-

cation between the gNB and the 5G Core. On Server-2, this

can be achieved by setting a route to the 5G core network

segment via the IP address of Server-1 [5]. Upon successful

configuration, the resulting architecture of the environment

should resemble that shown in Figure 1.

V. RESULTS

Taking advantage of the new RAN performance metrics ex-

posed in this work, xApps can extract additional KPIs through

5Available at: https://github.com/srsran/srsRAN_Project.
Accessed on May 7, 2025.

XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

his has driven the

Open5GS

UPF AMF

ZMQ

NearRT-RIC

srsUE

srsRAN-4G

srsRAN

GNB

E2

5G Core Functions

N2

N3

Server 1

Server 2

xAPP

Fig. 1. Environment architecture.

the E2 interface, enabling more precise control decisions, and

improved adaptability to dynamic network conditions.

The deployed xApp is available in the project’s Github

repository6. This xApp leverages different Machine Learning

(ML) models to predict power consumption at the gNB. Figure

2 illustrates the xApp workflow, where KPIs such as McsUl,

SNR, RRU.PrbAvailUl and RRU.PrbTotUl are recorded

into a CSV file and stored on the server’s local drive. A sliding

buffer window is applied to smooth the KPI data before it is

passed to the ML model for prediction.

Server 1

Disk

NearRT-RIC

E2SM KPM metrics collection

CSV

Writing
Buffer

collection

RIC Framework
xApp

Buffer

standardization

Model Results

MODEL

Model Logic

Fig. 2. Power Consumption xApp workflow.

With the environment at hand, the user may next capture

metrics via E2 nodes using the xApp, following the custom

E2SM-KPM. We utilize the example xApp presented on

Github to store relevant KPIs in a CSV (Comma Separated

Values) format file.

Figure 3 illustrates the collection of selected KPIs before

the treatment with sliding buffer window was applied. During

the experiment, traffic was generated using iperf3 to simulate

an uplink data stream from the UE to the 5G Core. A custom

script initiated the scenario with a 60-second warm-up period,

after which the test alternated between 120 seconds of active

traffic and 60 seconds of idle time, over a total duration of

540 seconds.

6Available at: https://github.com/gt-oiran/

power-consumption-module. Accessed on May 8, 2025.

Fig. 3. KPIs collected before sliding window treatment.

To emulate realistic and fluctuating network conditions, the

traffic bandwidth was dynamically adjusted after each idle

interval. This allowed the observation of KPI variations under

different load patterns.

VI. CONCLUSION

This paper presented a robust test environment for develop-

ing and deploying gNB-focused xApps. Leveraging srsRAN

implementations and open-source components, the proposed

scenario can be easily replicated. This setup not only supports

current experimentation with 5G RAN architectures but also

serves as a valuable foundation for future studies, including the

development and evaluation of machine learning-based xApps

and other custom logic for intelligent RAN control.

AKNOWLEDGEMENTS

The authors would like to thank the National Council for

Scientific and Technological Development (CNPq) (process:

408326/2023-9), the Rede Nacional de Ensino e Pesquisa

(RNP), the Centro de Pesquisa e Desenvolvimento em Tele-

comunicações (CPQD), and the OpenRAN@Brasil program

(process MCTI No: A01245.014203/2021-14).

REFERENCES

[1] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Under-
standing O-RAN: Architecture, Interfaces, Algorithms, Security, and
Research Challenges,” IEEE Communications Surveys & Tutorials,
vol. 25, no. 2, pp. 1376–1411, 2023. DOI: 10.1109/COMST.2023.
3239220.

[2] J. Groen, S. D’Oro, U. Demir, et al., “Implementing and Evaluating
Security in O-RAN: Interfaces, Intelligence, and Platforms,” IEEE

Network, pp. 1–1, 2024. DOI: 10.1109/MNET.2024.3434419.
[3] A. Lacava, M. Bordin, M. Polese, et al., “ns-O-RAN: Simulating O-

RAN 5G Systems in ns-3,” in Proceedings of the 2023 Workshop on

Ns-3, ser. WNS3 ’23, Arlington, VA, USA: Association for Computing
Machinery, 2023, pp. 35–44, ISBN: 9798400707476. DOI: 10.1145/
3592149.3592161. [Online]. Available: https://doi.org/
10.1145/3592149.3592161.

[4] O-RAN ALLIANCE, “ORAN.WG3.E2SM-RC-R003-v04.00,” O-RAN
ALLIANCE e.V., Technical Specification ORAN.WG3.E2SM-RC-
R003-v04.00, 2023, Clause 9.2.1.15. [Online]. Available: https://
www.o-ran.org/specifications.

[5] P. Liu, K. Lee, F. Cintron, et al., Blueprint for Deploying 5G O-

RAN Testbeds: A Guide to Using Diverse O-RAN Software Stacks,
en, Oct. 2024. DOI: https : / / doi . org / 10 . 6028 / NIST .
TN.2311. [Online]. Available: https://tsapps.nist.gov/
publication/get_pdf.cfm?pub_id=958753.

