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Machine Learning Models for Virtual Base Station

Power Consumption Estimation
Elen Gomes, Lucas Rodrigues, Diego Bezerra, Djamel F. H. Sadok and Glauco Gonçalves

Abstract— The growing demand for energy efficiency in mobile
networks has driven the adoption of virtualized Base Stations
running on general-purpose processors. This paper compares
machine learning models for estimating power consumption
using data from four processor architectures. Extreme Gradient
Boosted Trees Regressions delivered the most accurate and robust
predictions. Neural Networks exhibited unstable performance,
particularly on specific platforms, whereas Linear Regressions
demonstrated lower reliability in low-power scenarios. Results
highlight the critical importance of aligning the processor ar-
chitecture with the chosen model to ensure practical power
estimation and energy optimization.
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I. INTRODUCTION

Along with the evolution of different generations of mo-

bile networks, their underlying systems have increasingly

demanded more energy due to the rising number of users, the

emergence of more resource-demanding services, and growing

data traffic volumes [1]. Whereas energy efficiency (EE) is

a core design principle of 5G New Radio (NR) [2], the

widespread adoption of mobile networks as the backbone to

support smart cities, Industry 4.0, and autonomous vehicles

imposes new challenges for ensuring network EE [1].

In this context, it is noteworthy that, on average, about 70%
of a telecommunications operator’s energy consumption comes

from the Radio Access Network (RAN). Within the RAN, the

Base Station (BS) is the most energy-consuming component,

accounting for approximately half of the total consumption

[3]. Therefore, actions on energy consumption optimization

and reduction of carbon emissions [4] can help 5G networks

to promote the United Nations Sustainable Development Goals

(UN SDGs) [5] and overall environmental preservation.

Among the available technological approaches for improv-

ing EE at the BS level, Network Function Virtualization

(NFV) stands out. Under this approach, BS functions are

implemented in software as virtual Base Stations (vBSs),

running on general-purpose Central Processing Units (CPU)

or shared computing pools [6]. It is known that vBSs can

typically consume significantly more power than those running

on dedicated hardware [7]. However, a vBS can be fine-

tuned and rescheduled in real-time by software to meet current

service and user demands. This flexibility allows for freeing

up CPU time for other network functions, contributing to

improved overall efficiency.
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Implementing energy-saving strategies at the software level

impacts operational costs and the network’s environmental

performance [8], underscoring the importance of accurate

energy prediction and optimization tools.

Estimating how much power a vBS consumes at a given

time is imperative in energy consumption. When working with

a BS, such a value can be measured directly from the device.

However, power must be estimated for a vBS network function

since the vBS shares a CPU with other network functions.

Regarding modeling the energy consumption of BS, various

approaches have been used across the existing literature.

Linear models have been commonly used for estimating power

consumption, as discussed by [9]. However, a strong tendency

exists toward adopting Machine Learning (ML) models [6].

In this direction, this work conducts a comparative analysis

of the performance of Neural Networks (NN) and Extreme

Gradient Boosted Trees Regression (XGB) models against the

Linear Regression (LR) model, used as a baseline in prior

studies [6], [9], [10]. These experiments aim to identify the

most effective approach for estimating power consumption,

providing insights applicable to energy usage modeling in vBS

environments. Model evaluation is conducted in a controlled

experimental setup using the dataset provided by [11].

From a practical standpoint, models like these can be inte-

grated into network management systems, allowing dynamic

adjustments in the configuration of vBSs, such as modifying

sleep duration based on energy consumption. This approach

can significantly contribute to the network’s EE while reducing

operational costs and environmental impact.

This paper is organized as follows: Section II discusses the

related work; Section III describes how the experiments were

designed; Section IV presents and discusses the results; and

finally, Section V provides the findings and future research

directions.

II. RELATED WORK

One of the earlier approaches to power consumption mod-

eling in BSs is presented in [12], where Quadratic and LR

models estimate the energy consumption of 2G and 3G BSs

as a function of voice and data traffic. The quadratic regression

model shows better performance. The authors also note that

the BS power to traffic pattern relationship changes for each

BS and period, which indicates that a one-size-fits-all model

would fail to capture all the variability of the RAN, and, in

turn, it opens space for developing BS-specific ML models.

Building upon this foundation, [10] employs a combination

of XGB, CatBoost, and NN models through a weighted
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average approach to enhance the accuracy of energy consump-

tion predictions. The results demonstrate the effectiveness of

this approach, achieving a Mean Absolute Percentage Error

(MAPE) of 3.5620%, Root Mean Squared Error (RMSE) of

1.1524, and Mean Absolute Error (MAE) of 1.0245. The

authors further highlight the significant impact of BS con-

figuration on energy consumption, emphasizing factors such

as Remote Radio Units (RU) type, number of antennas, and

other operational parameters.

Further extending the scope of ML-based energy modeling,

[9] introduces an Energy Analytics Dashboard supporting

Energy Scoring and a RU EE Analysis. This work used

ML techniques to identify inefficient RUs regarding energy

consumption. The MAPE was measured for XGB (10.83%),

Random Forest Regressor (10.95%), Decision Tree Regressor

(14.22%), and Huber Regressor (29.41%) algorithms, with

XGB achieving the best performance.

In a vBS-focused context, authors in [6] present vBS

power consumption regressors using NNs trained with data

that includes features such as airtime, Signal-to-Noise Ratio

(SNR), and Modulation and Coding Scheme (MCS). The NN

models were compared against a custom regression model with

domain knowledge from [13]. To train and test the models,

authors leveraged data from the dataset in [11] where each

model was labeled according to the vBS’s underlying CPUs,

namely, NUC1, NUC2, SERVER1, and SERVER2. The results

show that, in general, the NN model performance is similar

to that of the regression model, RMSE is below 0.20 for

NUC1, between 0.20 and 0.40 for NUC2 and SERVER1,

and between 1.20 and 1.40 for SERVER2 for both prediction

techniques, but without requiring deep domain knowledge or

making problematic assumptions on the way variables are

related.

Despite the growing interest in energy-efficient modeling,

most prior works focus on physical BSs or RUs. In contrast,

vBSs, a trend in the evolution of RAN, remain underexplored.

Existing studies show that ML models must be tailored to the

hardware and operational profile of each BS, and this is par-

ticularly true for vBSs, where energy consumption is closely

tied to the characteristics of the compute resources. While

ensemble tree-based models (e.g., XGB, Random Forest) have

shown superior performance in energy prediction tasks, none

of the cited studies has investigated or compared such models

specifically in the context of vBSs.

III. MATERIAL AND METHODS

Based on prior literature, this work compares three distinct

models: LR, NN, and XGB. LR is a baseline due to its

simplicity, low computational cost, and frequent use in earlier

studies [9]. NN was selected for its ability to model nonlinear

patterns without domain-specific assumptions [6], while XGB,

a tree-based ensemble, was included for its proven accuracy

in energy prediction [10]. Together, these models represent

traditional, neural, and tree-based approaches, supporting a

broad evaluation of predictive performance across CPUs.

To evaluate the proposed models, this paper adopts a

methodological framework illustrated in Figure 1. All Python

code used in the experiments is publicly available in a GitHub

repository to support transparency and reproducibility. This

repository includes scripts for generating feature density plots,

performing model selection with log files in Text File (TXT)

format, and conducting train-test experiments with scatter plots

and output in Comma-Separated Values (CSV) files1.

Fig. 1. Evaluation scheme of power consumption prediction models.

The experiments are based on the dataset made available by

[11], specifically the dataset_ul.csv file, which contains

Key Performance Indicators (KPIs) from the uplink channel

and vBS power consumption metrics. The experimental setup

includes a vBS, user equipment (UE), and a digital power

meter. Both the UE and the vBS are emulated using an

Ettus Universal Software Radio Peripheral (USRP) B210.

The Baseband Unit (BBU) runs on two Intel Next Unit

of Computing (NUCs) and two servers. The Remote Radio

Head (RRH) is powered via USB from the BBU. The UE

utilizes a general-purpose computer connected to the vBS

via SMA cables with attenuators. All devices run Ubuntu

18.04 and a custom version of Software Radio Systems LTE

(srsLTE) 19.12, which enables dynamic MCS and airtime

control, as well as the retrieval of real-time performance

metrics. Power consumption is measured by software using

Intel’s Running Average Power Limit (RAPL) interface with

the Turbostat utility, capturing CPU power consumption

only. Several experiments were conducted, with experimental

factors including bandwidth, transmission mode, uplink load,

UE transmission gain, MCS, and airtime. Each configuration

runs for one minute, during which the average and variance of

power usage are collected. The uplink traffic load is generated

using the Multi-Generator Network Test Tool (MGEN). Further

implementation details and additional experimental results can

be found in the original publications by [11], [13].

Hyperparameters were tuned using Random Search, except

for the LR, which used a simple Grid Search due to having

only two configuration options (with/without intercept). The

search spaces comprised 11,741,760 combinations for XGB

and 1,818,720 for NN. A 1% sample of each was used to

identify optimal configurations, selected based on the lowest

MAPE score. For reproducibility, all models were instantiated

with fixed seeds. Table I summarizes the hyperparameters and

their tested values, which were chosen in an equiprobable way.

Following the methodology presented by [6], airtime,

SNR and MCS variables were selected as features, with

1Available at: https://github.com/lasseufpa/

ml-for-vbs-power.git. Accessed on May 19, 2025.
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TABLE I

HYPERPARAMETERS AND VALUE RANGES USED IN MODEL TUNING.

Model Hyperparameter Value Range

XGB

n_estimators randint(50, 201)

learning_rate [0.01, 0.05, 0.1,

0.2, 0.3]

max_depth randint(3, 11)

min_child_weight randint(1, 7)

gamma [0, 0.1, 0.3, 1]

subsample [0.7, 0.8, 1.0]

colsample_bytree [0.7, 0.8, 1.0]

reg_alpha [0, 0.01, 0.1]

reg_lambda [0.1, 1, 10]

NN

hidden_layers 1-3 layers (5-100

units with step 5)

activation ["relu", "tanh",

"logistic"]

solver ["adam", "sgd"]

learning_rate_init [0.0005, 0.001,

0.01]

alpha [0.0001, 0.001,

0.01]

beta_1 [0.9, 0.95]

beta_2 [0.99, 0.999]

the respective column names airtime, mean_snr, and

mean_used_mcs, while the power consumption measured

by software was used as the target variable (rapl_power

column). To ensure the consistency and quality of the dataset,

only records that met the following selection criteria were

considered:

1) The MCS variable can take on different values up

to a maximum limit defined by the platform (column

fixed_mcs_flag=0);

2) No experimental failures (column

failed_experiment=0);

3) A channel bandwidth of 10 MHz (column BW=50).

The evaluation considered the four CPUs in the dataset,

using aliases from [6], as well as a complete data split of

80% for training and 20% for testing, which results in the

sample distribution shown in Table II.

TABLE II

SAMPLE DISTRIBUTION PER CPU AND ALIASES.

Alias CPU TDP[W] Train Test

NUC1 i7-8559U@2.70GHz 28 479 119

NUC2 i7-8650U@1.90GHz 15 128 32

Server1 i7-6700@3.40GHz 65 86 21

Server2 i7-9700@3.00GHz 65 86 21

Table II presents the Thermal Design Power (TDP) of

the processors used in the Server and NUC environments.

TDP represents the average power, in watts, that a processor

dissipates when operating at its Base Frequency with all cores

active under an Intel-defined, high-complexity workload. As

expected, Server processors exhibit higher TDP values, reflect-

ing their greater computational and thermal requirements2.

2Available at: https://www.intel.com/content/www/us/

en/products/compare.html?productIds=191792,88196,

124968,137979. Accessed on May 19, 2025.

Additionally, the models were generated separately for each

CPU since each one exhibits a different power consumption

range for the same experiment. At the same time, the input

characteristics (airtime, SNR, and MCS) do not vary signifi-

cantly, as illustrated in Figure 2, which shows the probability

density functions of both the input features and the target

variable (Power Consumption).

Fig. 2. Statistical distribution of the features and the target for each CPU.

The features were standardized using the MinMaxScaler,

which adjusts the values to the range [0, 1], as shown in

Equation 1. The standardized values can then be rescaled to

a new range [a, b], using Equation 2; however, for this study,

the original [0, 1] scale was used.

Xstd =
X −min(X)

max(X)−min(X)
(1)

Xscaled = Xstd · (b− a) + a (2)

Finally, the models were trained using the training data and

evaluated based on the estimates generated on the test set. The

comparison is based on the metrics MAE, RMSE, and MAPE,

in line with the approach adopted in [10]. The MAE, given

in Eq. (3), measures the average of the absolute differences

between the actual values y and the predicted values ŷ, where

n is the number of samples. It is simple to interpret and less

sensitive to outliers [14]. The MAPE, in Eq. (4), expresses the

error as a percentage relative to the actual value, facilitating

comparisons across different scales, although it is sensitive

to minimal values (yi ≈ 0). The RMSE, defined in Eq. (5),

computes the square root of the mean squared error, heavily

penalizing significant errors and therefore being more sensitive

to outliers than MAE.

MAE =
1

n

n
∑

i=1

|yi − ŷi| (3)

MAPE =
1

n

n
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i=1
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RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (5)

IV. RESULTS AND DISCUSSION

The estimative performance of all evaluated models across

different CPUs is summarized in Table III. Among all evalu-

ated approaches, the XGB algorithm demonstrated the most

consistent and accurate performance across all processors,

achieving the best MAE and MAPE values in every scenario.

However, it did not always produce the lowest RMSE, which

is known to be more sensitive to outliers.

TABLE III

METRIC RESULTS FOR EACH MODEL.

CPU Model MAE[W] RMSE[W] MAPE[%]

NUC1

LR 0.079 0.105 2.022

XGB 0.024 0.031 0.611

NN 0.024 0.031 0.619

NUC2

LR 0.286 0.358 2.895

XGB 0.246 0.371 2.537

NN 0.269 0.334 2.800

Server1

LR 0.332 0.425 1.306

XGB 0.256 0.370 1.018

NN 0.281 0.378 1.080

Server2

LR 0.845 1.401 3.762

XGB 0.665 1.537 2.970

NN 1.469 1.713 6.431

For the NUC1 device, the XGB and NN models yielded

nearly identical results, with both models sharing the lowest

MAE and RMSE values. The NN exhibited a marginally

higher MAPE, differing only at the third decimal place,

indicating that both models are practically interchangeable.

On NUC2, XGB again achieved the best MAE and MAPE,

while NN slightly outperformed XGB regarding RMSE, likely

due to better handling of outliers in that specific scenario.

On Server1, XGB produced the lowest errors across all three

metrics, reaffirming its robustness. For Server2, a similar trend

to NUC2 was observed: XGB achieved the best MAE and

MAPE, whereas the LR model obtained the lowest RMSE.

When evaluating average performance across all processors,

LR achieved a mean MAE of 0.385, RMSE of 0.572, and

MAPE of 2.496%. XGB achieved a mean MAE of 0.298,

RMSE of 0.577, and MAPE of 1.784%, while NN yielded a

mean MAE of 0.511, RMSE of 0.614, and MAPE of 2.732%.

Therefore, XGB had the lowest average MAE and MAPE,

whereas LR achieved the lowest average RMSE.

It is important to emphasize that, in absolute terms, minor

prediction errors (measured in watts) are more critical in low-

power devices. While server-grade processors (Server1 and

Server2) have a TDP of 65 W, the NUC1 and NUC2 devices

operate at 28 W and 15 W, respectively. That means an error

of 1.469 W represents only 2.26% of the TDP for servers but

corresponds to 5.25% of NUC1’s TDP and 9.79% of NUC2’s

TDP. Consequently, models must be precise when applied to

resource-constrained devices such as NUCs.

The RMSE values obtained by the best-performing models

for each CPU were closely aligned with those reported in [6].

Although the author did not disclose the exact performance

metrics, the models were evaluated using the same dataset, and

the reported RMSE ranges are consistent with the results of

this study. This alignment reinforces the validity of the adopted

approaches in nearly all cases, except for the LR model on

Server1 and the models evaluated on Server2.

Such influence of outliers can be visually confirmed in

the scatter plots shown in Figures 3, 4, 5, and 6. In these

plots, the comparison between the model predictions and the

identity line (representing ideal predictions) reveals that the

points are more tightly clustered around the line in NUC1,

suggesting lower variability and greater ease in estimating

power consumption. For NUC1, it is also evident that the LR

model generated predictions that deviated significantly from

the identity line compared to the other models, a behavior not

observed with the same intensity on the different CPUs.

Fig. 3. Scatter plot comparing model predictions on NUC1.

Fig. 4. Scatter plot comparing model predictions on NUC2.

In contrast, the Server2 CPU exhibited a wider dispersion

in prediction errors, with several instances of substantial

underestimation and overestimation. In extreme cases, power

consumption values around 21W were predicted to be as high

as 27.5W , highlighting the model’s difficulty in achieving

reliable generalization in this context.
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Fig. 5. Scatter plot comparing model predictions on Server1.

Fig. 6. Scatter plot comparing model predictions on Server2.

A notable behavior observed in the neural network model

on Server2 was its tendency to restrict predictions to a narrow

range between 23W and 26W rather than leveraging the full

spectrum of observed values. This limitation likely contributed

to this model’s significantly higher error metrics than its

performance on other processors.

V. CONCLUSION

This work evaluated LR, NN, and XGB models for esti-

mating power consumption in vBS scenarios across different

CPU architectures. XGB consistently outperformed the others

in terms of MAE and MAPE, while LR achieved the lowest

RMSE; however, it was less reliable in low-power scenar-

ios due to its sensitivity to outliers. NN exhibited unstable

behavior, particularly on Server2, with significantly higher

prediction errors. Despite the limited diversity of CPUs and

reduced number of samples, especially for server platforms,

the findings align with prior research and indicate that power

estimation must consider both the hardware architecture and

the chosen model. XGB proved to be the most accurate and

robust approach for heterogeneous vBS environments.

As future work, the adoption of online learning techniques

is proposed to enable continuous adaptation to workload and

hardware variations. Additionally, the developed models are

intended for integration into an xApp to support real-time

power estimation and dynamic energy optimization in vBS

environments.
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