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Abstract—The expansion of the Internet of Things (IoT)
presents significant security challenges due to the limited re-
sources of many IoT devices and their insufficient protection
mechanisms. Lightweight protocols, such as Message Queueing
Telemetry Transport (MQTT), are particularly susceptible to
cyberattacks, underscoring the need for robust and adaptive
mitigation strategies. Traditional security solutions, including
conventional firewalls and signature-based detection systems,
often struggle to counter sophisticated and evolving threats. To
address these challenges, this work proposes a novel security
architecture that integrates Machine Learning techniques with
the Uncomplicated Firewall (UFW) to effectively detect and
mitigate cyberattacks in IoT environments. The LightGBM
(LGBM) classifier achieved a detection accuracy of 96%, with
both precision and recall exceeding 95% in identifying malicious
MQTT traffic, thereby validating its effectiveness. Furthermore,
the proposed approach was tested under real attack scenarios
on an IoT system, and the source code has been made publicly
available to facilitate future research and improvements.

Keywords— Internet of Things, Message Queuing Telemetry
Transport, Machine Learning, Uncomplicated Firewall, Cyber-
security.

I. INTRODUCTION

The rapid expansion of the (IoT) has driven technological
advancements across industrial, commercial, and consumer
domains, fostering seamless connectivity among billions of
devices. However, this widespread interconnectivity has also
introduced significant security challenges, as many IoT devices
- ranging from sensors and actuators to smart appliances - are
inherently resource constrained and lack robust security mech-
anisms [1]. These vulnerabilities make [oT networks prime
targets for cyber threats, particularly Denial-of-Service (DoS)
and Distributed Denial-of-Service (DDoS) attacks, which ex-
ploit the weaknesses of lightweight communication protocols
such as MQTT [2]. In this context, the MQTT protocol is
becoming the standard messaging protocol for many Machine-
to-Machine (M2M) communications in IoT scenarios, due to
its lightweight overhead, publish/subscribe (pub/sub) model,
and bidirectional capabilities [3].

As IoT networks continue to expand, traditional firewall
configurations and signature-based Intrusion Detection Sys-
tems (IDS) have struggled to adapt to evolving cyber threats,

particularly as attackers develop more sophisticated evasion
techniques [[1]]. These conventional security solutions often rely
on predefined signatures or static rule sets, making them inef-
fective against novel attack patterns. Machine Learning-driven
approaches have emerged as a promising alternative, enabling
real-time anomaly detection and enhancing the capability of
Network Intrusion Detection and Prevention Systems (NIDPS)
to mitigate security breaches dynamically [4].

The primary objective of this work is to design and validate
a comprehensive security architecture tailored for MQTT-
based IoT environments. This architecture integrates Machine
Learning-based anomaly detection with UFW-based mitigation
mechanisms to effectively detect, block, and mitigate DoS
attacks. By addressing the inherent vulnerabilities of resource-
constrained IoT devices, our approach aims to provide a
scalable, automated, and adaptive solution that significantly
enhances the overall security posture against evolving cyber
threats.

Contributions: (1) We propose a security architecture for
cyberattack mitigation in IoT environments, combining Ma-
chine Learning methods and the UFW. (2) We demonstrate the
effectiveness of the system in detecting malicious traffic and
automatically mitigating suspicious activities. (3) We conduct
real-world attacks on an IoT system and successfully achieve
mitigation by deploying the proposed security architecture.
The source code is publicly available for further research and
development.

II. RELATED WORK
A. Machine Learning-based Attack Detection

Nowadays, many researchers have proposed Machine
Learning-based approaches to detect cyberattacks in [oT sys-
tems. These methods are based on models trained with features
extracted from network packets, enabling the classification of
packet types based on detected patterns. In [Sl], Figueiredo
et al. compared the performance of various binary classifiers
in identifying malicious traffic in MQTT-based smart home
networks. Hussain ef al. [6] developed a security framework
for healthcare IoT using IoT-Flock to generate attack traffic
and applied Machine Learning techniques for anomaly detec-
tion. Sultan et al. [7]] evaluated five Machine Learning models
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for detecting man-in-the-middle (MiTM) attacks, considering
multiple performance metrics. In [9], Xie implemented and
compared four Machine Learning models to classify 12 differ-
ent types of DDoS attacks in networks based on transport layer
protocols. Although most studies focus on detecting cyberat-
tacks, they often lack mechanisms for mitigating threats after
detection. Similarly, Alaiz-Moreton et al. [8] created a dataset
from MQTT networkd to propose an IDS leveraging ensemble
methods and recurrent neural networks to classify attacks
in IoT environments. The cited works achieved great results
in detecting attacks; however, they only focused on offline
detection. Furthermore, online detection was not addressed,
which is a crucial aspect in real IoT scenarios. In our work,
we propose an online detection approach for DoS attacks in a
real-world setting using a Machine Learning model. This real-
time capability is essential for practical applications, especially
in systems that require immediate response to threats.

B. Attack Mitigation Methods

The methods for mitigating cyberattacks are usually based
on advanced firewalls, DDoS prevention systems against vol-
umetric attacks, and NIDPS. These defense strategies pri-
marily rely on predefined rules, but modern systems also
incorporate behavioral analysis and Artificial Intelligence-
driven threat detection to enhance mitigation effectiveness.
In the IoT context, attack mitigation approaches have been
proposed in the literature. In [10], Jadhav and Sane proposed
the implementation of the Suricata, an open-source IDS/IPS,
on a Raspberry Pi to demonstrate the feasibility of running
mitigation software on an embedded platform. Another study
on IDS/IPS topic was conducted by Coscia et al. [4], in
which the authors proposed an algorithm for the automatic
generation of rules for Suricata using the Decision Tree
Machine Learning model. Furthermore, some authors have
proposed frameworks specifically designed to mitigate attacks
in IoT environments. The works of [[10] and [4] demonstrate
good performance in mitigating attacks; however, they do not
focus on MQTT-based networks and do not address detection
methods, leaving a gap that may allow other types of attacks
to occur. In [13], Jha et al. proposed a mitigation strategy
that combines attack detection using Machine Learning models
with real-time mitigation through firewalls. However, this work
also does not focus on IoT systems. In [11], Iy et al
adopted Software-Defined Networking (SDN) and Network
Functions Virtualization (NFV) architectures to enable the
effective implementation of an IDPS in home IoT networks.
Zhou et al. [12]] proposed an SDN-enabled framework capable
of proactively adapting the attack surface of IoT networks,
dynamically optimizing defense strategies, and rapidly de-
ploying corresponding defense mechanisms. In our work, we
focus on detection-based mitigation of attacks specifically
in MQTT networks, ensuring higher accuracy in identifying
threats whose behavior was previously learned by the Machine
Learning model.

III. SCENARIO

This work aims to develop a security architecture to mitigate
DoS attacks in IoT systems focusing on MQTT communica-

tions. Figure [I] illustrates the proposed scenario.
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Fig. 1: Scenario proposed.

MQTT Network. In our scenario, we implemented a remote
temperature and humidity monitoring system. A DHT11 sen-
sor was used to collect measurements, and an ESP32 module
handled communication with the broker, sending messages at
a frequency of 60 seconds. The temperature and humidity data
is received by an Android application called MyMQTTﬂ For
this work, we used the HiveMQ broker. The communication
network follows the MQTT 3.1.1 protocol. Authentication
was not enabled and no username and password exchange is
required to authenticate clients to the broker.

Denial of Service Attack. Denial of Service is a cyber-
attack that makes IoT systems or resources on the network
unavailable to their intended legitimate users [14]]. In this
work, we implemented flooding attack in the network. In
this case, an adversary sends many connection-establishment
requests to the victim and each request causes the victim to
allocate resources that maintain state for that connection [[15]).
Hence, the aim goal is to saturate the broker, by establishing
several connections with the broker and sending, for each
connection, the higher number of messages possible [16].
We adopted the tools the MQTTSAP| and MQTT-Malarid|
to execute this attack. Figure [I] shows the adversary in the
network.

IV. METHODOLOGY

The methodology of this work consists in two steps. The
first, is to develop a Machine Learning based-detector to
indetify DoS attacks on the network and the second is to
integrate the detector with the UFW to mitigate attacks.

A. Machine Learning based-Detector

To develop of the detector consists in four major stages.
These modules include packets capturing, dataset creation, and
Machine Learning model training.

1) Packets Capturing: The data capture from the network
was performed using the TSharkﬂ tool. We collected normal
and malicious traffic separately. As a result, the final files

! Available at|https://mymgtt.app/en

2Available in https://sites.google.com/fbk.eu/mqttsa

3 Available in https://github.com/etactica/mgtt-malaria

4Available at https://www.wireshark.org/docs/man-pages/
tshark.html
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consists in one containing traffic without DoS attacks and
another with DoS attacks. Table [l presents the total amount of
collected data.

TABLE I: Number of packets captured.

Traffic Number of packets
Without attack 24,559
With attack 105,981

2) Dataset Creation and Preprocessing: The data was
collected and saved in CSV file format. To prevent class imbal-
ance, we performed undersampling. First, we concatenated the
legitimate and malicious traffic samples. Then, we randomly
selected a number of samples from the majority class equal to
that of the minority class. This strategy aims to reduce bias in
the model during training.

For this study, we considered the following features for
analysis:

« tcp.flags: A hexadecimal number that represents the TCP

flags.

o tcp.time_delta: A floating-point number that indicates
the time difference between the current packet and the
previous one.

o tcp.den: An integer that represents the TCP payload
length.

In particular, to ensure that the tcp.flags feature contained
only numerical values, we applied a cleaning process to
remove any non-numeric characters. This was achieved using
a regular expression that retained only digits and periods. This
step helps standardize the data and prevent inconsistencies that
could affect the analysis and model training.

3) Machine Learning Model Training: To train our Ma-
chine Learning model, we used the LazyPrediclE] (LP) frame-
work to perform a comparative evaluation of various clas-
sifiers. This evaluation was based on multiple metrics —
- Accuracy, Receiver Operating Characteristics (ROC), Area
Under The Curve (AUC) and F1 score —- which allowed us
to identify the most promising algorithms for our problem.

The initial assessment considered several algorithms, and
the models that achieved a precision greater than 90% are
presented in the Table [T}

TABLE II: Performance of models with accuracy above 95%.

Model Accuracy ROC AUC F1 Score
LGBMClassifier 0.97 0.97 0.97
KNeighborsClassifier 0.97 0.97 0.97
RandomForestClassifier 0.96 0.96 0.96
BaggingClassifier 0.96 0.96 0.96
ExtraTreesClassifier 0.96 0.96 0.96
DecisionTreeClassifier 0.96 0.96 0.96
ExtraTreeClassifier 0.96 0.96 0.96
AdaBoostClassifier 0.96 0.96 0.96

Among the models evaluated for attack detection in IoT
networks, several demonstrated excellent performance, achiev-

SAvailable  at
latest/

https://lazypredict.readthedocs.io/en/

ing over 95% in Accuracy, ROC AUC, and F1-Score. No-
tably, both the LGBMClassifier and the KNeighborsClassifier
reached 97% across all evaluated metrics. Other models, such
as RandomForestClassifier, BaggingClassifier, and AdaBoost-
Classifier, also exhibited consistent results, with slightly lower
but still robust performance for the proposed scenario.

We then applied a stratified five-fold cross-validation to
further assess the LGBMClassifier’s generalization. This pro-
cedure yielded an average F1 Score of 0.9689 with a standard
deviation of 0.0018, and individual fold scores of 0.9711,
0.9667, 0.9669, 0.9696, and 0.9699—confirming the model’s
robust and consistent performance across different data splits.

To partition the training set, the data was randomly shuf-
fled while preserving the original class distribution and then
divided into five balanced subsets. In each iteration, the model
was trained on four of these subsets and validated on the
remaining one.

Furthermore, to fine-tune the model and further optimize
its performance, we used a grid search approach to select the
optimal hyperparameters.

4) Development of the Online Capture Script: The de-
velopment of the online capture script is the final step of
the detector. This script is responsible for capturing and
preprocessing values online and sending them to the trained
Machine Learning model. The script was written in Python,
and its structure is based on three steps, as described in Figure

Machine Learning
model
classification

Online packets
capture

Preprocessing
values

Step 1 Step 2 Step 3

Fig. 2: Detector steps.

1) Step 1: Online packet capture was performed using the
PyShark library. We used the local host interface and
the "tcp or mqtt" capture filter in the script.

2) Step 2: To preprocess values from the packets, we
created a function to process categorical values from the
tep.flags feature.

3) Step 3: The classification result is the output of the
Machine Learning model.

B. Intregation of Detector and UFW

This step consists of mitigating attacks detected by the
Machine Learning model. The main goal is to use the UFW
to block network packets when the Machine Learning model
output is 1 (attack detected). To achieve this, we implemented
a strategy that dynamically updates the firewall rules upon
attack detection. The approach consists of adding iptables
rules to drop all MQTT traffic (port 1883) when an attack
is identified. Furthermore, the system terminates the MQTT
broker process to prevent further attack propagation. The
Algorithm [T] ilustrates the work of the system.

V. EXPERIMENTS AND RESULTS

In this section, the practical application of methodology
proposed is discussed. First, we show the results of Machine
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Algorithm 1 Integration of Machine Learning Model with

UFW.

. Initialization:

: Define the network interface for packet capture.

: Set the capture filter for TCP and MQTT packets.

: Load the pre-trained Machine Learning model from a file.

: Packet Capture and Processing:

. Start continuous packet capture on the defined network
interface.

AN AW N =

7: while new packet is captured do
8 if packet contains a TCP layer then
: Extract the following features:

10: tep.flags: Remove the "0x" prefix and format
as an integer.

11: tep.time_delta: Replace "N/A" with zero and
convert to a floating-point number.

12: tep.len: Replace "N/A" with zero and convert
to an integer.

13: Display the extracted features.

14: end if

15: Packet Classification:

16: Use the Machine Learning model to classify the packet
based on extracted features.

17: Display the classification result.

18: if packet is classified as an attack (label = 1) then

19: Add iptables rules to drop MQTT packets on port
1883.

20: Display a message indicating attack mitigation.

21: Terminate the MQTT broker process to prevent
further propagation.

22: Stop packet capture.

23: end if

24: end while

25: Termination:

26: if user manually interrupts execution then

27: Display termination message.

28: else if an unexpected error occurs then

29: Display an error message and terminate the program.

30: end if

31: Display a message indicating that the network is out of
service.

Learning model training and, finally, the implementation of
the architecture on scenarios with attack.

A. Machine Learning Model Training Results

As mentioned in Section [[V] we use LP to select an
optimal model for packet classification. The chosen model
was the LGBM Classifier. The best model configuration was
determined using GridSearchCV, resulting in a model with a
learning rate of 0.1, maximum depth of 7, and 200 estima-
tors. This configuration achieved the highest performance in
our experiments. The selected algorithm was implemented in
Python using the LightGBM and Scikit-learn libraries.

Table presents the classification report of the LGBM
Classifier, where class 0 represents normal traffic and class 1

indicates attack traffic. To validate these results, we consider
common Machine Learning evaluation metrics described in
[17]: True Positive, False Positive, False Negative, True Neg-
ative, Accuracy, Precision, Recall, and F1-Score.

TABLE III: Classification Report Metrics

Class Precision ~ Recall ~ Fl-score
0 0.9717 0.9642 0.9679
1 0.9645 0.9720 0.9683
Accuracy 0.9681

Furthermore, Table shows the model’s performance in
terms of hits and misses in percentage format.

TABLE IV: Confusion matrix (%) of the LGBM classifier.

Actual \ Predicted \ Normal  Attack
Normal 96.42 3.58
Attack 2.80 97.20

B. Attack Scenario

To execute attacks on the systems, we use the MQTTSA
and MQTT-Malaria tools with the followings sets: In the first
time of attack, we employ 100 amount of connections for the
flooding-based DoS with 10 megabytes the payload size and
100 messages to test of messages queued by the browser. In
the second time, we execute 8 processes in sequence, each
with 10000 messages of 100 megabytes.

C. Implementation of Security Architecture

To validate our approach, we implemented the architecture
within the attack scenario detailed in Section The inte-
gration of the online detector with UFW, described in Section
was tested on the same machine hosting the broker. Figure
[illustrates the implemented architecture, with the broker logs
shown on the left and the packet classification script on the
right.

The complete project, including all code and demon-
stration videos, is available in a public GitHub repository:
https://github.com/matheus-fig/Architecture_Security_ MQTT.

VI. CONCLUSION

The research presented explores the use of Machine Learn-
ing techniques for detecting and mitigating cyberattacks in
MQTT-based IoT environments. The proposed approach inte-
grates an online detection system with the UFW, enabling real-
time attack detection and automated mitigation. The results
demonstrated that the system effectively identifies and miti-
gates attacks, making it a viable solution for implementation
in critical IoT systems. However, blocking all network packets
when a threat is detected is not the most efficient solution for
such systems. Future work will focus on studying methods to
define precise firewall rules that target only malicious packets,
rather than disabling the entire network. These studies will
contribute to making the proposed approach more practical
for real-world deployment in IoT environments with stringent
security and performance requirements.
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Fig. 3: Simultaneous execution of the online detector with UFW.
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