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Enhanced Ballistic Trajectory Estimation from
Radar Data Using the Cubature Kalman Filter
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Abstract— This paper investigates the use of the Cubature
Kalman Filter (CKF) for estimating the trajectory of a pro-
jectile with known ballistic parameters using simulated radar
measurements from a Weapon Locating Radar. The CKF is
a nonlinear filtering technique with enhanced accuracy and
numerical stability compared to the Extended Kalman Filter
and the Unscented Kalman Filter. We evaluate the Cubature
Kalman Filter performance under realistic measurement noise
and dynamic conditions. The simulation results demonstrate
improved tracking accuracy and robustness, highlighting its
potential as a reliable solution for ballistic trajectory estimation
in defense applications.

Keywords— Cubature Kalman Filter, Ballistic Trajectory, Tra-
jectory Estimation, Ballistic Coefficient, Weapon Locating Radar,
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I. INTRODUCTION

Artillery has long played a decisive role in warfare, from
the widespread use of mortars during World War II, where
it is estimated that over 50% of infantry casualties were
caused by mortar fire [1], to the high-intensity, artillery-centric
operations observed in the ongoing Russia-Ukraine conflict
[2]. In modern battlefields, artillery is not only a primary
source of firepower but also a crucial tool for deterrence, area
denial, and rapid response [3].

In this context, the precise computation of ballistic trajecto-
ries becomes critical to the effectiveness of defense systems,
particularly for technologies like Weapon Locating Radars
(WLR). By tracking the launched projectiles in flight, a
WLR can accurately locate the hostile weapon and impact
point before the projectile reaches the ground, significantly
reducing the effectiveness of artillery fire and contributing
to the protection of personnel [4]. However, nonlinearities
in projectile motion and its observation, wind disturbances,
changing atmospheric conditions and measurement noise in
radar systems, pose significant challenges to traditional es-
timation techniques. Addressing these limitations demands
advanced and robust algorithms capable of providing accurate
and consistent predictions in real-world operational environ-
ments.

Kalman filtering techniques are widely employed for state
estimation in linear systems [5]. For nonlinear systems, the
Extended Kalman Filter (EKF), introduced in [6] and [7], is a
commonly used approach that linearizes the system dynamics
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around the current state estimate. However, this linearization
can introduce significant errors, especially in systems with
strong nonlinearities [8].

The Unscented Kalman Filter (UKF) addresses some lim-
itations using a deterministic sampling strategy to propagate
mean and covariance through nonlinear transformations [9].
Despite this improvement, the UKF’s performance is sensitive
to selecting sigma point parameters. In contrast, the Cubature
Kalman Filter (CKF), which relies on third-degree spherical-
radial cubature integration, provides a more accurate and
numerically stable alternative for nonlinear state estimation
[10].

Several studies have explored advanced filtering techniques
to address the nonlinearities involved in ballistic trajectory
estimation. For instance, [11] compared the EKF, UKF, and
CKF for tracking a ballistic target during the re-entry phase.
Similarly, [12] conducted a performance comparison of five
types of nonlinear filters in the task of ballistic missile tracking
during the re-entry. In contrast, the present work investigates
the application of the CKF for estimating the trajectory of
artillery projectiles using simulated WLR measurements in
shorter detection windows. A comparative study with EKF
and UKF evaluates accuracy and robustness under realistic
measurement noise conditions.

The remainder of this paper is organized as follows. Section
II presents the ballistic trajectory model with associated states
and measurement equations. Section III describes the CKF and
its application to trajectory estimation. Section IV outlines the
simulation setup and discusses the results obtained from the
Monte Carlo experiments. Finally, Section V concludes the
paper with a summary of the findings and suggestions for
future research.

II. BALLISTIC TRAJECTORY MODEL

Several models can describe projectile motion, ranging
from simple kinematic equations to high-fidelity six-degree-of-
freedom (6-DoF) models incorporating detailed aerodynamic,
rotational, and structural characteristics [13]. However, in
the context of WLR, the point-mass approximation offers a
practical and effective solution. This is primarily due to the
limited availability of detailed information about the physical
and aerodynamic properties of hostile projectiles and the lack
of knowledge about their launch platform parameters.

The point-mass approximation ballistic model adopted in
this work assumes that the projectile behaves as a rigid
body without rotational dynamics and that its motion is
governed exclusively by external forces, namely gravitational
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acceleration and aerodynamic drag. An exception applies to
rocket trajectories, for which a constant thrust is considered
during the burn phase, introducing an internal propulsive
force incorporated into the dynamic model. Unlike simplified
models with constant gravity, this formulation accounts for
gravitational acceleration variations as a function of latitude.
Air density and the speed of sound are modeled using an
exponential approximation, providing a sufficiently accurate
representation of atmospheric effects. Additionally, Earth’s
curvature and Coriolis effects are neglected, as their influence
is minimal for the short- to medium-range trajectories typically
associated with RAM (rocket, artillery, and mortar) projectiles.

The point-mass model of a projectile is described by [14]:

dV⃗

dt
= −ρSCd(M)

2m
∥V⃗ ∥V⃗ + g⃗, (1)

where V⃗ is the projectile’s velocity vector, m is the projectile’s
mass, ρ is the air density, S is the cross-sectional area, g⃗ is
the acceleration vector due to gravity, and Cd(M) denotes the
drag coefficient as a function of the Mach number M .

The air density is approximated as an exponential function
of altitude [14]:

ρ(h) = ρ0e
− h

H , (2)

where ρ0 = 1.225 kg/m3 is the air density at sea level, h is
the projectile’s altitude in meters, and H ≈ 8,400 m is the air
density decay factor of the atmosphere.

The ballistic coefficient, denoted as CB(M), characterizes
both the fixed physical properties and the aerodynamic effi-
ciency of a projectile. It is defined as a function of the Mach
number M , the ratio between the projectile’s speed and the
local speed of sound, as follows [15]:

CB(M) =
2m

Cd(M)S
(3)

Using CB(M) instead of separate parameters improves
numerical conditioning in filters for ballistic parameter es-
timation or classification, as its magnitude is comparable to
position and velocity states, aiding convergence [16].

Figure 1 illustrates curves of Cd and CB as functions of
M . These curves are commonly determined from wind tunnel
experiments, computational fluid dynamics (CFD) simulations,
or identified from real flight test data [17] and are typically
tabulated for use in ballistic models.
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Fig. 1. Example curves of drag coefficient (Cd, dimensionless) and ballistic
coefficient (CB , in kg/m2) as functions of Mach number (M ).

For trajectory estimation, the system state vector includes
both position and velocity components:

x = [x, y, z, vx, vy, vz]
T , (4)

where (x, y, z) represents the projectile’s position in an in-
ertial reference frame, and (vx, vy, vz) are the corresponding
velocity components.

Radar noisy measurements provide the range (r), azimuth
(θ), and elevation (ϕ), grouped as:

p = [r, θ, ϕ]T , (5)

which are converted to Cartesian coordinates using the trans-
formation: xy

z

 = r

cos(ϕ) cos(θ)cos(ϕ) sin(θ)
sin(ϕ)

 . (6)

III. CUBATURE KALMAN FILTER FOR TRAJECTORY
ESTIMATION

Unlike linearization-based approaches such as the EKF, the
CKF offers improved estimation accuracy in strongly nonlin-
ear systems. In various applications, it also has demonstrated
superior performance and numerical stability compared to the
UKF in a wide range of applications [18].

We assume a dynamic system with the following form:

Process equation: xk = f(xk−1,uk−1) + vk−1 (7)
Measurement equation: zk = h(xk,uk) +wk (8)

where f(·) and h(·) are nonlinear functions, and vk−1 and wk

denote the process and measurement noises, respectively.
The CKF algorithm, given the known initial values x0,

P0|0, and the ballistic coefficient curve CB(M), involves the
following steps [19]:

Time Update
• Assuming at time k that the posterior density function

p(xk−1|Dk−1) = N (x̂k−1|k−1,Pk−1|k−1)

is known and nx is the number of states. Factorize:

Pk−1|k−1 = Sk−1|k−1S
⊤
k−1|k−1 (9)

• Evaluation of cubature points (i = 1, 2, . . . , c):

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (10)

where c = 2nx, ei stands for the i-th coordinate vector
in Rn and the cubature points are defined by [18]:

ξi :=

{√
c
2 ei, i = 1, 2, . . . , nx,

−
√

c
2 ei−nx , i = nx + 1, nx + 2, . . . , c,

(11)

• Evaluation of propagated cubature points

X∗
i,k|k−1 = f(Xi,k−1|k−1,uk−1) (12)

• Estimation of predicted state:

x̂k|k−1 =
1

c

c∑
i=1

X∗
i,k|k−1 (13)

• Estimation of predicted error covariance:

Pk|k−1 =
1

c

c∑
i=1

X∗
i,k|k−1X

∗T
i,k|k−1 − x̂k|k−1x̂

⊤
k|k−1 +Qk−1 (14)
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Measurement Update
• Factorize

Pk|k−1 = Sk|k−1S
⊤
k|k−1 (15)

• Evaluation of cubature points (i = 1, 2, . . . , c)

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (16)

• Evaluation of propagated cubature points (i = 1, 2, . . . , c)

Zi,k|k−1 = h(Xi,k|k−1,uk) (17)

• Estimation of predicted measurement

ẑk|k−1 =
1

c

c∑
i=1

Zi,k|k−1 (18)

• Estimation of innovation covariance matrix

Pzz,k|k−1 =
1

c

c∑
i=1

Zi,k|k−1Z
⊤
i,k|k−1 − ẑk|k−1ẑ

⊤
k|k−1 +Rk (19)

• Estimation of cross-covariance matrix

Pxz,k|k−1 =
1

c

c∑
i=1

Xi,k|k−1Z
⊤
i,k|k−1 − x̂k|k−1ẑ

⊤
k|k−1 (20)

• Estimation of Kalman gain

Wk = Pxz,k|k−1P
−1
zz,k|k−1 (21)

• Estimation of updated state

x̂k|k = x̂k|k−1 +Wk(zk − ẑk|k−1) (22)

• Estimation of corresponding error covariance

Pk|k = Pk|k−1 −WkPzz,k|k−1W
⊤
k (23)

The CKF algorithm [19] above was implemented in Python,
alongside conventional EKF and UKF approaches, to assess
their performance in meeting the requirements of a WLR.

IV. SIMULATION AND RESULTS

To evaluate the performance of the proposed estimation
algorithms, we developed a ballistic trajectory simulator using
the point-mass model. The simulator incorporates gravitational
effects with latitude-dependent variation and models atmo-
spheric conditions using exponential approximations for air
density and speed of sound.

Digital elevation terrain maps might be incorporated to
enable more accurate modeling of projectile-to-ground inter-
action and improving the estimation of both the launch point
(LP) and impact point (IP) [20]. In this work, the terrain was
modeled as a planar surface with zero elevation, and both the
LP and IP were assumed to lie on it.

Radar measurements for each projectile were processed
using EKF, UKF, and CKF algorithms. The evaluation focused
on key performance metrics, including the accuracy of LP and
IP predictions and computational efficiency, particularly within
the limited time available for early warning and counterfire
after WLR detection.

Three distinct classes of RAM projectiles were selected
to evaluate the estimation performance of the algorithms.
Each projectile was characterized by different physical and
aerodynamic parameters, including mass, cross-sectional area,

and ballistic coefficient. Table I summarizes the main charac-
teristics of each projectile used in the simulation.

TABLE I
PROJECTILE PARAMETERS

Parameter P1 P2 P3

Class Medium Mortar Heavy Howitzer Light Rocket
Caliber 81 mm 155 mm 70 mm
Cross-sect. Area (m2) 0.00515682 0.01879622 0.00384845
Mass (kg) 4.2 43.4 11.9
Muzzle Velocity (m/s) 301.9 684.3 97.9
Max Velocity (m/s) 301.9 684.3 811.6
Firing Angle (deg) 60 45 33
Time of Flight (s) 30.11 69.64 40.11
Burn Time (s) - - 1.17

The radar system was modeled with parameters representa-
tive of modern WLRs. Table II presents the main simulation
settings for radar measurement generation.

TABLE II
RADAR SIMULATION PARAMETERS

Parameter Value

Update Rate 10 Hz
Range Accuracy (1σ) 10 m
Azimuth Accuracy (1σ) 2 mrad
Elevation Accuracy (1σ) 2 mrad
Radar-weapon distance 14 km

To evaluate the performance of the CKF, a Monte Carlo
simulation with 100 independent runs was conducted and
compared against EKF and UKF in the prediction of both
LP and IP. The simulation setup assumes a projectile with a
known ballistic coefficient tracked by a WLR. It employs the
same dynamic model, initial conditions, and forward/backward
extrapolation strategy described in [20] for processing the set
of radar measurements.

To quantitatively evaluate the accuracy of the estimated
LP and IP, the Circular Error Probable (CEP) metric was
adopted. CEP50% is a widely used measure in ballistics and
target tracking, defined as the radius of a circle centered at
the true point within which 50% of the estimated positions
fall [21]. This metric intuitively and statistically represents
localization accuracy in 2D space, making it well-suited for
military and radar applications, where estimation errors are
typically circular and Gaussian. CEP provides a single scalar
value that facilitates performance comparison across scenarios
and filters.

Figure 2 illustrates the 3D trajectory predictions for projec-
tiles P1, P2, and P3, comparing the estimated paths obtained
by forward and backward propagation against the true tra-
jectory. The radar measurements are shown as discrete blue
points, and the estimated LP and IP are indicated. Each case
uses a measurement window at a different flight phase relative
to the apogee.

Figures 3, 4, and 5 present the simulation results regarding
CEP50% for projectiles P1, P2, and P3, respectively. The
CKF achieved the lowest CEP50% values in all cases, re-
maining below 2% of the distance between the WLR and
the corresponding true LP or IP. These results reflect a high
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Fig. 2. Predicted and true trajectories in 3D space for projectiles P1, P2, P3
and radar measurements.

level of positional accuracy, with the UKF also demonstrating
relatively competitive performance. Overall, the CKF and UKF
outperformed the EKF in all evaluated scenarios due to their
greater ability to handle the nonlinearities of the dynamic
model without relying on linear approximations, such as the
first-order derivatives used in the EKF.

Table III summarizes the CEP50% values for LP and IP
estimations across all projectiles and filtering methods.

TABLE III
CEP50% VALUES FOR LAUNCH AND IMPACT POINT ESTIMATIONS

Prediction Filter P1 P2 P3

LP
EKF 571.59 m 214.07 m 697.11 m
UKF 378.12 m 139.98 m 401.66 m
CKF 141.76 m 62.10 m 112.19 m

IP
EKF 227.37 m 562.41 m 448.27 m
UKF 142.67 m 380.17 m 280.29 m
CKF 62.97 m 168.12 m 65.65 m
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Fig. 3. Comparison of CEP50% values for projectile P1.
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Fig. 4. Comparison of CEP50% values for projectile P2.
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Fig. 5. Comparison of CEP50% values for projectile P3.

Table IV summarizes the average execution time for each
filtering algorithm. As expected, the EKF presented the lowest
computational cost due to its linearization approach and re-
duced mathematical complexity. In contrast, the CKF and UKF
require multiple function evaluations for each update step,
resulting in longer processing times. However, both remained
suitable for real-time applications.

The relative position of the radar detection window with
respect to the projectile’s apogee significantly influences the
estimation accuracy. When measurements are taken near the
apogee, as in the cases of P1 and P3, both forward and back-
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TABLE IV
AVERAGE EXECUTION TIME FOR LP AND IP PREDICTION

Technique Execution Time (ms)

EKF 73 ms
UKF 231 ms
CKF 244 ms

ward extrapolations benefit from symmetrical observability,
leading to balanced accuracy in estimating both launch and
impact points. In contrast, P2 is observed before the apogee,
improving LP estimation due to proximity but limiting the
information available to reconstruct the later portion of the
trajectory. This asymmetry increases IP errors, as reflected in
the CEP50% results. These findings highlight the importance of
radar observation timing in WLR performance and estimation
reliability.

V. CONCLUSION

This study investigated the application of the CKF for
estimating ballistic projectile trajectories using simulated radar
measurements from a WLR. The performance of the CKF was
compared with that of the EKF and the UKF across three
scenarios, focusing on the accuracy of LP and IP predictions.

The CKF provided the best overall performance, main-
taining estimation errors below 2% of the projectile-to-radar
distance while offering acceptable computational efficiency
for real-time applications. Results indicate a substantial im-
provement in estimation accuracy compared to both UKF and
EKF. Across all scenarios, the CKF reduced the CEP50% by
approximately 2 to 4 times relative to the UKF and about 3
to 6 times compared to the EKF.

These findings highlight the advantages of the CKF in
achieving higher accuracy and robustness, particularly in the
presence of significant measurement noise and nonlinear dy-
namics. Despite the increased computational load compared to
the EKF, the CKF demonstrated a favorable balance between
estimation accuracy and processing time [18], confirming its
viability for real-time implementation.

A key limitation of the proposed approach lies in the
assumption of a known ballistic coefficient for the projectile.
This constraint, however, can be mitigated through projectile
classification techniques based on initial radar measurements
[22], enabling the selection of an appropriate ballistic coef-
ficient from a predefined database. Alternatively, the ballistic
coefficient curve can be extracted from prior detection data
using filtering techniques, which allow for a more accurate
estimation even under measurement uncertainty. These strate-
gies are currently under investigation as part of ongoing efforts
to extend the capabilities of the estimation framework.

Future work will involve conducting real-world experiments
with live radar data to validate and possibly refine the proposed
methodologies, investigating advanced filtering techniques to

enhance estimation accuracy like fifth-degree CKF (5TH-
CKF) [23], and implementing computational optimizations to
ensure effective real-time performance.

ACKNOWLEDGEMENTS

The authors would like to thank the Brazilian Navy and
Brazilian Army for partial support of this work, which was
also partially funded by the FINEP Project 0 1 22 0329 00.

REFERENCES

[1] J. Milner, “Radar mortar locator development in the UK: the first
30 years,” in IEE Proceedings F (Communications, Radar and Signal
Processing), vol. 131, no. 2. IET, 1984, pp. 233–239.

[2] L.-G. Oprean, “Artillery and drone action issues in the war in Ukraine,”
Scientific Bulletin, vol. 28, no. 1, p. 55, 2023.

[3] J. Bailey, “Artillery and warfare 1945-2025,” 2009.
[4] W. Fishbein, “Firefinder, a radar forty years in the making,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 44, no. 2, pp.
817–829, 2008.

[5] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45,
Mar. 1960.

[6] R. E. Larson, R. M. Dressler, and R. S. Ratner, Application of the
extended Kalman filter to ballistic trajectory estimation. Stanford
Research Institute, 1967.

[7] M. Gruber, An approach to target tracking. MIT Lincoln Laboratory,
1967.

[8] F. Daum, “Nonlinear filters: beyond the Kalman filter,” IEEE Aerospace
and Electronic Systems Magazine, vol. 20, no. 8, pp. 57–69, 2005.

[9] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[10] I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, 2009.

[11] D. Hong-de, D. Shao-wu, C. Yuan-cai, and W. Guang-bin, “Performance
comparison of EKF/UKF/CKF for the tracking of ballistic target,”
TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 10,
no. 7, 2012.

[12] N. K. Singh, S. Bhaumik, and S. Bhattacharya, “A comparison of
several nonlinear filters for ballistic missile tracking on re-entry,” in
2016 IEEE First International Conference on Control, Measurement and
Instrumentation (CMI). IEEE, 2016, pp. 459–463.

[13] G. Klimi, Exterior Ballistics. Xlibris Corporation, 2014.
[14] R. McCoy, Modern exterior ballistics: The launch and flight dynamics

of symmetric projectiles. Schiffer Pub., 1999.
[15] F. J. Regan, Dynamics of atmospheric re-entry. Aiaa, 1993.
[16] S. D. M. Achanta, “Analysis of effect of ballistic coefficient in the

formulations and performance of EKF with emphasis on air drag,” Indian
Journal of Science and Technology, vol. 8, pp. 1–5, 01 2015.

[17] Y. Chen, C. Wen, Z. Gong, and M. Sun, “Drag coefficient curve
identification of projectiles from flight tests via optimal dynamic fitting,”
Control Engineering Practice, vol. 5, no. 5, pp. 627–636, May 1997.

[18] I. Arasaratnam, “Cubature Kalman Filtering Theory & Applications,”
Thesis, McMaster University, Apr. 2009.

[19] I. Arasaratnam and S. Haykin, “Cubature Kalman Filters,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, pp. 1254–1269, Jun. 2009.

[20] D. M. O. Crus, F. A. C. Bastos, J. A. Apolinário Jr., and J. A. N. Silva,
“Performance of backward Kalman filtering techniques for estimating
projectile launch point,” in 2025 IEEE 16th Latin America Symposium
on Circuits and Systems (LASCAS), 2025, pp. 1–5.

[21] R. S. Johnson, S. D. Cottrill, and P. Z. Peebles, “A computation of
radar SEP and CEP,” IEEE Transactions on Aerospace and Electronic
Systems, vol. AES-5, no. 2, pp. 353–354, 1969.

[22] F. Tennebø, “Improving classification of ballistic, non-cooperative radar
targets,” Master’s thesis, Østfold University College, Norway, 2022.

[23] B. Jia, M. Xin, and Y. Cheng, “High-degree cubature kalman filter,”
Automatica, vol. 49, no. 2, pp. 510–518, 2013.


