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Abstract— Artificial Intelligence in Electronic Warfare has
gained prominence, particularly for Automatic Modulation Clas-
sification tasks. Deep learning methods have demonstrated ro-
bustness and high accuracy in addressing this challenge. This
study proposed and tested Long Short-Term Memory and Convo-
lutional Neural Network architectures for Automatic Modulation
Classification in radar signals. The LSTM model achieved 90%
accuracy in classifying eleven modulation types at -2.66 dB SNR,
while the CNN model reached the same accuracy at 1.50 dB
SNR. Although the LSTM outperformed the CNN, it required
higher computational resources and longer latency.
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I. INTRODUCTION

There has been a growing demand for automation in Elec-
tronic Warfare (EW) systems. To address this need, integrating
Artificial Intelligence (Al) into EW systems has emerged as a
solution [1]. AD’s ability to provide effective decision support,
manage large volumes of data, and enhance decision-making
processes allows for improved self-control, self-regulation, and
self-actuation in these military systems [2].

Automatic Modulation Classification (AMC) or Automatic
Modulation Recognition (AMR) consists of identifying the
modulation scheme of a received signal without any prior
information. In a non-cooperative environment, such as in
EW, this becomes a critical challenge, which makes the AMC
crucial for achieving tactical superiority, especially when
dealing with the AMC of radar signals [3]. The challenge
of AMC for radar signals is becoming an urgent problem
in electronic countermeasure systems. As the electromagnetic
environment on the battlefield becomes increasingly complex,
the parameters of radar signals are also evolving accordingly.
Conventional techniques are more likely to have poorer perfor-
mance and higher computational complexity, especially under
low signal-to-noise ratio (SNR) conditions [4]. Due to the
high accuracy and robustness capabilities of deep learning
techniques, they have begun to be widely used to solve AMR
tasks [5].

Different deep learning techniques have been used in the
context of AMC for radar signals. One example is the ap-
plication of a Convolutional Neural Network (CNN) Le-Net-5
to classify eight types of radar modulations, achieving 96.52%
accuracy under a -2 dB SNR condition [6]. The work presented

Pedro de Figueiredo Abissamra, Sarah Negreiros de Carvalho Leite,
Renato Machado, and Dimas Irion Alves are with the Electronic Warfare
Laboratory, Aeronautics Institute of Technology, Sdo José dos Campos-SP.
E-mails: pedro.abissamra.101808 @ ga.ita.br, sarah.leite @ gp.ita.br, {rmachado,
dimasirion } @ita.br.

in [7] proposed using an AlexNet to classify twelve radar
modulations. The network accomplished the task with 97.58%
accuracy at an SNR of -6 dB. In another early study, a
coordinate attention model was introduced to a ShuffleNet,
which could also distinguish between twelve classes with
98.14% accuracy at an SNR of -8 dB [8].

Recurrent Neural Networks (RNN) have been proposed for
different applications [9], [10]. The study in [9] used RNNs
to classify, denoise, and deinterleave pulse streams, while [10]
focused on classifying radar emitters. Additionally, the authors
in [4] developed a novel method that combined a shallow
Convolutional Neural Network (CNN) with a bidirectional
Long Short-Term Memory (Bi-LSTM) network to address the
modulation classification task for radar signals. This combined
approach achieved an impressive 95% accuracy in classifying
eight modulation types under -10 dB Signal-to-Noise Ratio
(SNR) conditions. More recently, an LSTM network capable
of classifying twenty-three distinct types of radar modulations
was introduced, achieving 90% accuracy at -2 dB SNR [11].

These advancements highlight the growing prevalence of
deep learning techniques in electronic warfare, particularly
for radar signal classification. This paper aims to evaluate the
performance of LSTM and CNN architectures for automatic
modulation classification (AMC) of radar signals.

This paper is organized as follows. Section II describes
the dataset, the deep learning architectures used, and how
the performance evaluation was executed. Section III presents
the results obtained for each tested model, as well as a
discussion about those results. Section IV concludes the paper
and presents future work to be accomplished.

II. METHODOLOGY

This work applied two deep learning models, namely a Long
Short-Term Memory and a Convolutional Neural Network, in
the Automatic Modulation Classification task. For each model,
a baseline architecture was chosen as a reference to verify the
performance of the proposed architectures. The dataset used
was the DeepRadar2022, which will be described next.

A. DeepRadar2022

DeepRadar2022 is a dataset created by [11]. It consists of
modulated In-Phase and Quadrature (IQ) radar signals sampled
at 100MHz. It has 21 modulation classes plus a noise and a
non-modulated class, totaling 23 balanced classes. All data
was created using Matlab, and signals with different SNRs
were created for each class. The SNR varies from -12 dB to
20 dB with a step of 2 dB, summing up 782000 different
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signals with a (1024 x 2) shape. They are already separated
into 60% for training and 20% for test and validation. The full
dataset can be found in [12].

In this paper, due to hardware limitations, a reduced dataset
with 11 classes was used: Linear Frequency Modulation,
Frequency Modulation with Costas Code, Binary Phase-Shift
Keying, Phase Modulation with Barker code, Phase Mod-
ulation with Frank code, Phase Modulation with P1 code,
Phase Modulation with P2 code, Phase Modulation with P3
code, Phase Modulation with P4 code, Non-Modulation and
Complex White Gaussian Noise (noise). The total number of
training data was 224400; and for test and validation, this
amount was 74800.

B. Long Short-Term Memory

The LSTM baseline architecture (referred to here as LSTM
1) was proposed by [11]. It consists of three stacked LSTM
layers, a dense layer, and the classification layer beside the
input layer. Each LSTM layer comprises 128 cells; the fully
connected (FC) layer uses a softmax activation function with
11 output neurons, and the input layer has a (1024 x 2) shape.
The total number of parameters is 331.659.

The proposed LSTM architecture (referred to here as LSTM
2) is similar to the baseline architecture. The only difference
is that this new one has four stacked LSTM layers with 64
cells each. The input and the dense layer are the same as the
previous, as shown in Figure 1. This new network has a total
of 116.939 parameters.
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Fig. 1. Layers description of the proposed LSTM architecture (LSTM 2).

The training parameters were the same for both architec-
tures. A total of 500 epochs were used with a batch size of 512
samples. The optimizer used was Adaptive Moment Estimation
(ADAM) with a cyclical learning rate varying from 1.10~7 to
1.1073. These networks were trained on a personal computer
equipped with an AMD Ryzen 7 3700x CPU, 32 GB RAM,
and a 12 GB RTX3060 Nvidia GPU. The testing hardware
was a server equipped with 104 x Intel Xeon Gold 5320 CPU
and 1 TB of RAM.

C. Convolutional Neural Network

The CNN baseline architecture (referred to here as CNN 1)
was proposed by [13]. It consists of seven one-dimensional
convolution layers with 64 filters each and a kernel size of

three. A max pooling layer is used between each convolution
layer with a pool size of two. These layers are followed by
two fully connected layers with 128 neurons and the output
layer with 11 neurons. The ReLU activation function is used
in all convolution layers. The dense layers employ a SELU
activation function, whereas the output layer uses the Softmax
activation function. The input layer has a (1024 x 2) shape,
and the total number of parameters of CNN 1 is 158.155.

The proposed CNN architecture (CNN 2) consists of six
one-dimensional convolutional layers, each with a distinct
number of filters. In the first layer, there are 512 filters, and
as the next layer arises, the number of filters is divided by
two. This way, in the sixth layer, there are only 32 filters.
As discussed in CNN 1, the kernel size is three, and a max
pooling layer with a pool size of two is used between each
convolutional layer. After the first and second max pooling
layers, a dropout of 20% was inserted. Four fully connected
layers were used. In the first layer, there are 256 neurons,
while in the others, this number decays by a factor of two
until 32 neurons in the last layer before the output, which
has 11 neurons. A dropout rate of 20% was also applied after
the first and second FC layers. The activation functions used
were the same as in CNN 1. A description of this network is
presented in Figure 2. The total number of parameters of the
new network is 713.579.
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Fig. 2. Layers description of the proposed CNN architecture (CNN 2).

The same training parameters were used for both architec-
tures. A total of 80 epochs were used with a batch size of 128
samples. The optimizer was ADAM with a cyclical learning
rate varying from 1.10~7 to 1.10~3. An early stopping monitor
was also used with a patience value of 5 epochs, and the
monitored parameter was the accuracy of the validation set.
The training and testing hardware was a server equipped with
104 x Intel Xeon Gold 5320 CPU and 1 TB RAM (the same
used for testing the LSTM).
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D. Performance Verification

To gain a more comprehensive understanding of the mod-
els’ and architecture’s performance, both the baseline and
the proposed networks were trained and tested. The LSTM
network underwent three training and testing cycles due to
its high computational demands and limited hardware avail-
ability. For the CNN network, five training and testing cycles
were performed. After each cycle, all performance parameters
(explained in Section II) were recorded, and their average
values were calculated.

Once all tests were completed, a statistical analysis was
conducted solely for the CNN models, given the limited
observation quantity for the LSTM network, to ensure that
the proposed CNN network performed better than the base-
line method. The statistical test employed was the one-way
ANOVA, with its approval criteria of a p-value of 0.05
or lower. In other words, if the calculated p-value of the
performance parameters observations was equal to or lower
than 0.05, an improvement with statistical significance could
be noticed. To ensure that this evaluation method would be
valid for these data (which respected a normal distribution),
the Kolmogorov-Smirnov test was previously executed for all
parameters in the evaluation, except for the number of epochs
and latency per sample, which can vary depending on the
computer in use.

III. RESULTS AND DISCUSSION

The performance of all architectures was verified by their
accuracy on the test set, number of epochs to train the model,
latency (for a batch of 32 samples), and minimum (SNR) for
a 90% accuracy. The SNR evaluation was done using two
approaches. The first approach outputs the average accuracy
(general accuracy) performance considering the assessment of
all modulations, while the second considers each modulation
separately. These approaches were tested for the LSTM and
CNN architectures, as described and discussed throughout this
section.

A. LSTM

The average results obtained for the LSTM 1 as well as
for the LSTM 2 are presented in Table I. Observing these
results, it is noticeable that, in general, the performance of the
proposed model is similar to that of the baseline model, except
for the latency per sample parameter, which is 27.03% lower
in LSTM 2. This is a consequence of the reduced number
of parameters compared to LSTM 1. However, although the
total number of parameters of LSTM 2 is reduced by 65%
compared to LSTM 1, the latency per sample does not follow
this proportion. The probable reason for that is the addition of
the fourth layer in the network.

Figure 3 presents the LSTM 2 general accuracy as a function
of the SNR in one of the tests. The general SNR that gives
a 90% accuracy is -2.50 dB. Figure 4 presents the SNR per
modulation obtained for the same architecture in the same test.
It can be seen that the minimum SNR required for the network
to maintain 90% accuracy is 0 dB, and the modulation that
limits this condition is the phase modulation with the P1 code.

TABLE I
AVERAGE PERFORMANCE TEST RESULTS OF THE LSTM ARCHITECTURES

SNR SNR
Accuracy L
Model (%) Epochs atency/ Modulations| General
% 1
Sample (ms) (dB) (dB)
LSTM
] 89.67 500 29.23 1.33 -2.58
LSTM
5 89.33 500 21.33 0.83 -2.66

Figure 3 presents the LSTM 2 general accuracy as a function
of the SNR in one of the tests done. The general SNR that
gives a 90% accuracy is -2.50 dB. Figure 4 presents the
SNR per modulation obtained for the same architecture in the
same test. It can be seen that the minimum SNR at which
the network can maintain 90% accuracy is 0 dB, and the
modulation that limits this condition is the phase modulation
with P1 code.
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Fig. 3. General accuracy as a function of SNR of the proposed LSTM
architecture.
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Fig. 4. Modulation accuracy as a function of SNR of the proposed LSTM
architecture.

From Figure 5, it is possible to identify that the LSTM has
more difficulty in classifying phase modulations, especially
with Frank and P codes. In contrast, the LSTM excelled in the
classification task for chirp, 2PSK, noise, and non-modulated
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signals, achieving 90% accuracy under a -9 dB condition.
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Fig. 5. Confusion matrix showing the misclassification errors of the proposed
LSTM architecture.

B. CNN

The average results obtained for each performance param-
eter for both CNN models tested are presented in Table II.
Analyzing it, it can be seen that the proposed network (CNN
2) was able to overcome 1,8% the baseline network in terms
of accuracy. Consequently, the minimum SNR (general and
per modulation) parameter is also reduced.

Comparing both SNR parameters, a 19% reduction (1.6
dB) was observed when examining the modulations separately,
and a 35% reduction (0.70 dB) was noted when considering
all modulations together. Nevertheless, when the number of
epochs and latency per sample is observed, it is noticed that
CNN 2 is heavier than CNN 1 once the number of epochs
needed to train the network is almost twice that of CNN 1,
and the latency parameter is 2.88 times higher than that of
CNN 1.

TABLE 11
AVERAGE PERFORMANCE TEST RESULTS OF THE CNN ARCHITECTURES

SNR SNR
Accuracy
Model (%) Epochs Latency/ Modulations| General
% 1
Sample (ms) (aB) (aB)
CNN
] 82.00 27.80 0.39 8.60 2.30
CNN
B 83.80 56.20 1.04 7.00 1.50

The statistical test results were 0.0013, 0.0602, and 0.0139
for accuracy, SNR per modulation, and general SNR, re-
spectively. As mentioned in Section II, the p-value approval
criterion for this work is 0.05. Therefore, looking rigorously
at the p-values presented, it is possible to verify that CNN 2

presented an improved performance compared to CNN 1 when
observing the accuracy and the general SNR.

The CNN 2 result for general accuracy as a function of the
SNR is shown in Figure 6. As we can see, the SNR that gives
a 90% accuracy is 1 dB. The accuracy per modulation as a
function of the SNR for the same test is presented in Figure
7. As a result, the minimum SNR at which the network can
maintain 90% accuracy is approximately 7 dB. The modulation
that limits this condition is the phase modulation with the
P4 code. Figure 8 presents a confusion matrix obtained for
this CNN architecture. The CNN also has more difficulty
classifying phase modulations, especially with Frank and P
codes. Similarly to the LSTM, the CNN also excelled in the
classification task for chirp, noise, and non-modulated signals,
classifying them with 90% accuracy under a -7.5 dB condition.
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Fig. 6.  General accuracy as a function of SNR of the proposed CNN
architecture.
104 | —————————prmrr————e——— -
0.8
LFM
—_ FM_Costas
S _
= 2PSK
9 061 - PM_Barker
§ PM_Frank
g PM_P1
0.4 PM_P2
© PM_P3
PM_P4
0.2 1 - NM
Noise
-10 -5 0 5 10 15
SNR (dB)
Fig. 7. Modulation accuracy as a function of SNR of the proposed CNN

architecture.

C. Models Comparison

From the previous results, both models have demonstrated
difficulty classifying phase modulations, especially in distin-
guishing between similar modulations, such as those with P
code. Similarly to the LSTM, the CNN can easily classify
noise, chirps, and non-modulated signals. LSTM was also
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Fig. 8. Confusion matrix showing the misclassification errors of the proposed
CNN architecture.

able to classify 2PSK modulations effortlessly. Comparing
the results obtained from the two models tested, it is evident
that the LSTM outperforms the CNN in terms of accuracy,
making it capable of classifying modulations under worse
SNR conditions. Nonetheless, this improvement incurs a high
computational cost to train the model and a high latency time
after training, compared to the CNN model. The choice of
using an LSTM or a CNN will depend on the context of the
application. On the one hand, if a more precise classification
is needed and processing time is not a critical problem, the
LSTM can be an appropriate model. On the other hand, if
processing time is crucial and the application permits slightly
neglecting accuracy, the CNN might be a good approach.

IV. CONCLUSIONS

This paper proposes an LSTM and a CNN architecture for
the Automatic Modulation Classification task applied to radar
signals. The performance of the proposed architectures was
compared to that of the baseline architectures. The LSTM
architecture can reduce latency time by 27%, while maintain-
ing similar accuracy and SNR performance to the baseline
architecture. Regarding CNN, the proposed architecture could
improve accuracy and SNR performance, but at the cost of
higher latency time.

LSTM has proven to be a powerful approach to this
problem, although it demands high computational power for
training and presents high latency time in the test stage.
Convolutional Neural Networks have been demonstrated to
be an efficient method for the AMC task. Besides having an
accuracy slightly lower than that of the LSTM architectures
tested, the CNN architectures had a latency time during the
testing stage that was at least 95% lower than that of the faster
LSTM architecture. The choice of using an LSTM or a CNN
model must be made according to the application’s needs.
If it requires higher accuracy and processing time is not a
concern, LSTM might be an excellent model. Alternatively,

if processing time is a crucial demand, the CNN can be a
good option, albeit at the expense of slightly compromising
accuracy capability.
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