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Estimation of Ground Reaction Force Using Deep
Neural Networks from Accelerometer Data: An

Approach with Bi-LSTM, TCN, and Hybrid
Architecture

Sérgio Rodrigues Lima Jr, Ronaldo F. Zampolo and Antônio Pereira Jr.

Abstract—This study presents a deep learning approach to
estimate ground reaction force from accelerometer data using
Bi-LSTM, TCN, and a hybrid architecture. A cross-correlation
analysis was performed to identify the sensor with the most
informative signals for prediction. The hybrid model achieved
the best balance between accuracy and training time, showing
promising results in RMSE, rRMSE, and R2. The proposed
methodology demonstrates potential for real-time gait analysis
in wearable systems, offering a portable and low-cost alternative
for clinical and sports applications.
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I. INTRODUCTION

Ground Reaction Force (GRF) is a fundamental biomechan-
ical variable in human motion analysis, frequently employed
in gait studies, clinical evaluations, and sports monitoring.
However, its direct measurement requires the use of force
plates (with costs around $3,437 [1]) or instrumented insoles,
which limits its applicability to controlled environments [2].

Inertial sensors have emerged as a portable and low-cost
alternative for indirect GRF estimation in out-of-laboratory
contexts, promoting greater technological inclusion in health
and sports applications [3], [4].

The relationship between accelerometer signals and GRF
has been widely investigated, although it presents significant
modeling challenges due to its nonlinear and time-dependent
nature. Small variations in acceleration can generate dispro-
portionate changes in the estimated force, and this relationship
varies throughout the gait cycle, since the forces generated in
each phase (such as initial contact, loading response, mid-
stance, and push-off) exhibit distinct biomechanical charac-
teristics. This complexity demands advanced modeling tech-
niques capable of capturing both the nonlinear variations and
the dynamic changes over time [5]. In this context, deep neural
networks such as Bi-LSTM (Bidirectional Long Short-Term
Memory) and TCN (Temporal Convolutional Networks) have
shown great potential for analyzing complex time series [6],
[7].

Bi-LSTM networks are an extension of conventional
LSTMs, capable of capturing temporal dependencies in both
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directions — past and future — making them particularly
suitable for tasks involving contextual analysis over time [3].
On the other hand, TCNs use dilated causal convolutions to
efficiently model temporal sequences, preserving the temporal
order of the data and enabling long-term pattern learning with
lower computational cost compared to recurrent networks [4],
since causality ensures that predictions at time t do not depend
on future inputs, while dilation expands the receptive field
by spacing out the elements considered in the convolution,
allowing the capture of long-range dependencies with fewer
layers [7].

This work proposes a comparison between three neural net-
work architectures for GRF prediction based on accelerometer
signals: one based on Bi-LSTM, another on TCN, and a third
hybrid model combining both. The study uses the dataset
described in [8], which allows for the comparison, validation,
and improvement of different motion capture systems. We used
accelerometer recordings from inertial sensors placed on the
lumbar region, thigh, and foot, as well as GRF data obtained
from instrumented insoles on the right foot. A cross-correlation
analysis was performed to identify the sensor most correlated
with the GRF, and the models were evaluated using the RMSE,
rRMSE, and R2 metrics. The results demonstrate the potential
of the proposed networks for the development of portable and
low-cost systems for gait monitoring, enabling clinical and
sports applications outside the laboratory environment.

At the following link is the repository containing the train-
ing codes for each neural network, the calculation of the mean
cross-correlation for each sensor, and the GRF prediction:

github.com/Network-Trainning.git

II. METHODOLOGY

A. Dataset

The dataset used in this study was originally described
by [8] and includes detailed biomechanical recordings of
human gait acquired simultaneously from multiple systems.
Among these, we selected synchronized signals from inertial
measurement units (IMUs) and force insoles. Data were col-
lected from ten asymptomatic participants performing several
locomotor tasks in a laboratory setting. Specifically, this study
used trials of normal gait, slow gait, fast gait, and two-minute
walking.

https://github.com/Sergio-Jr86/Network-Trainning.git
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Accelerometer data were acquired from Physilog®6S sen-
sors, placed on eight anatomical locations (lumbar, pelvis,
thighs, shanks, and feet), capturing tri-axial linear accelera-
tion, angular velocity, and magnetic field at 256 Hz. In this
work, we used only the tri-axial acceleration data from the
thighs, shanks, and feet. GRF data were recorded at 100 Hz
using Insole3 instrumented insoles, equipped with 16 pressure
sensors and an embedded inertial system to estimate total
force and center of pressure. All signals were obtained from
synchronized .csv files provided by the dataset authors,
aligned using predefined gait events such as acceleration peaks
and vertical jumps.

B. Data Preprocessing
In order to match the dynamic range of different sensors

and reduce the influence of noise, normalization and filtering
procedures were applied to both the input and output data
during neural network training. Z-score normalization was ap-
plied to the input data (accelerometers) to rescale the variables,
reducing the impact of outliers and improving convergence
during model training [9]–[11].

The output variable (GRF) was also normalized. This ad-
ditional normalization aimed to balance the scale between
input and output, avoiding the disproportionate influence of
the GRF’s high magnitude on the loss function [12].

Filtering was performed using a fourth-order Butterworth
low-pass filter with a cutoff frequency of 10 Hz, following
the same configuration described in [8], with the goal of
eliminating high-frequency noise and preserving the relevant
components of biomechanical signals [13]–[15].

C. Cross-correlation analysis between accelerometer signals
and GRF

In order to identify which inertial sensor provides the
most informative data for GRF prediction, a cross-correlation
analysis was performed between the resultant accelerometer
signals and the GRF. This method allows quantifying the
similarity between two time series, considering potential time
lags between them [16].

Given two discrete signals, x[n] (accelerometer signal) and
y[n] (GRF signal), the cross-correlation function Rxy[τ ] is
defined as:

Rxy[τ ] =
∑
n

x[n]y[n+ τ ], (1)

where τ represents the lag (positive or negative). This function
evaluates how much one signal resembles the other as it is
shifted in time.

The resultant acceleration magnitude ares was calculated
using the following equation:

ares =
√
a2x + a2y + a2z, (2)

where ax, ay , and az correspond to the accelerations recorded
along the three orthogonal axes.

The normalized cross-correlation was calculated between
the resultant acceleration signal and the GRF for each record-
ing. This normalization ensures that the correlation values

are bounded between −1 and 1, analogous to computing
the Pearson correlation coefficient for each lag [16]. By
normalizing, the influence of signal amplitude is removed,
allowing the comparison to focus solely on the shape similarity
between the signals.

From the cross-correlation function, the maximum absolute
correlation value was extracted, representing the degree of
similarity between the signals, regardless of the lag at which
it occurred. This procedure was repeated for all files in the
dataset.

Finally, for each sensor location, the mean and standard de-
viation of the correlation values were computed. These results,
presented in Table I and Figure 1, allowed the identification
of the sensor most correlated with the GRF, providing support
for selecting the optimal location for GRF prediction models.

Table I
MEAN AND STANDARD DEVIATION OF THE CROSS-CORRELATION

BETWEEN ACCELEROMETER AND GRF DATA

Sensor Mean Correlation Standard Deviation

Lumbar 0.7841 0.0716
Thigh 0.7799 0.0708
Shank 0.7854 0.0711
Foot 0.8521 0.0802

Figure 1. Average cross-correlation between the inertial sensor signals and
the GRF. Bar height represents the mean correlation for each sensor, while the
error bars indicate the standard deviation of correlation values across different
files analyzed.

D. Network Architecture Details

The configurations of the Bi-LSTM, TCN, and Hybrid
models were designed to balance predictive performance and
computational efficiency. All models were implemented using
MATLAB’s Deep Learning Toolbox and trained with the
Adam optimizer for 30 epochs using a mini-batch size of 128
samples.
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Bi-LSTM Model: Based on bidirectional long short-term
memory, capable of capturing temporal dependencies in both
directions [6], [18]. The architecture of the Bi-LSTM model
had the following layers:

• Sequence input layer with 3 input channels corresponding
to the accelerometer axes;

• Bi-LSTM layer with 128 hidden units;
• Dropout layer with dropout rate of 0.4;
• Bi-LSTM layer with 64 hidden units;
• Dropout layer (rate = 0.4);
• Fully connected layer with 64 units followed by a ReLU

activation;
• Fully connected layer with 1 output neuron;
• Regression layer using the mean squared error loss.
This model has approximately 155,000 trainable parameters,

with the majority concentrated in the recurrent layers.

TCN Model: A convolutional model with causal dilated
convolutions, which processes sequences in parallel with a
lower computational cost [7], [19]. The architecture of our
TCN model included:

• Sequence input layer with 3 channels;
• Causal 1D convolutional layer with 128 filters, kernel size

of 3, and dilation factor of 1;
• ReLU activation followed by a dropout layer (rate = 0.4);
• Causal 1D convolutional layer with 64 filters, kernel size

of 3, and dilation factor of 2;
• ReLU activation and dropout (0.4);
• Global max pooling layer;
• Fully connected layer with 64 units and ReLU activation;
• Fully connected layer with 1 neuron, followed by a

regression output layer.
The model contains approximately 85,000 trainable

parameters.

Hybrid Model (TCN + Bi-LSTM): A combination of TCN
convolutional layers with Bi-LSTM layers, aiming to extract
local and temporal patterns in a complementary manner.
The hybrid architecture combines convolutional and recurrent
structures:

• Two causal convolutional layers:
– First: 64 filters, kernel size 3, dilation factor 1;
– Second: 128 filters, kernel size 3, dilation factor 2.

• Each convolutional layer is followed by batch normaliza-
tion and ReLU activation;

• Two Bi-LSTM layers: first with 128 hidden units and
second with 64 hidden unit;

• Final dense regression head:
– Fully connected layer (64 units) → ReLU → Fully

connected (1 unit) → Regression layer.
This architecture comprises approximately 195,000 train-

able parameters.

E. Time Windowing and Validation

The time windowing step aims to transform the continuous
accelerometer signals into input sequences suitable for training

neural networks. To achieve this, the script scans the data using
sliding windows of fixed length (30 samples) with strides of 1,
3, and 5 samples, generating a set of temporal segments that
represent successive portions of the movement. Each window
contains a matrix with the components of the three-axis
accelerometer signals over time, forming a three-dimensional
input for the model. The output associated with each window is
the GRF value corresponding to the last sample in the window,
allowing the model to learn to predict the GRF based on
the recent history of movement. This approach is essential
for capturing the temporal dynamics of gait and providing
sufficient context for the model to identify relevant patterns in
the evolution of the signals. This segmentation strategy enables
the capture of fine-grained local variations and transitional
dynamics between gait phases, as detailed in [20].

For model evaluation, a 5-fold cross-validation (K=5) was
employed. This approach enhances statistical robustness and
maximizes the use of the available dataset, as supported by
the methodologies outlined in [21], [22].

F. Model Training and Evaluation

All models were trained using the Adam optimizer [23],
with the mean squared error (MSE) serving as the loss
function. Performance evaluation was measured with the root
mean squared error (RMSE), relative RMSE (rRMSE), and
the coefficient of determination (R2) as key metrics [24], [25].
Table II summarizes the average performance values obtained
across the models.

Table II
MODEL PERFORMANCE FOR GRF PREDICTION

Model RMSE rRMSE (%) R2

Bi-LSTM 0.3005 6.32 0.9112
TCN 0.4958 10.64 0.7535
Hybrid 0.2931 6.10 0.9134

The inference time analysis of each model was not doc-
umented, as no significant differences were observed among
them.

III. RESULTS AND DISCUSSION

A. Model Performance

Table II summarizes the results of the three architectures
for GRF estimation. The hybrid model demonstrated the best
overall performance and the highest coefficient of determi-
nation. The Bi-LSTM also performed well, while the TCN,
despite being the most computationally efficient, exhibited the
highest errors.

These results highlight the advantage of combining convolu-
tional and recurrent networks to capture both short- and long-
term temporal patterns in gait data, as previously explored in
the literature [6], [7], [18].

B. Qualitative Analysis

Figure 3 presents a visual comparison between the actual
GRF values and the predictions generated by the Bi-LSTM,
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Figure 2. Boxplot of the RMSE values obtained in the 5 cross-validation folds
for the Bi-LSTM, TCN, and hybrid models. It can be observed that the Bi-
LSTM model presents the lowest average RMSE, indicating higher accuracy,
while the TCN model shows the highest errors, despite its consistency
across folds. The hybrid model combines good accuracy with low variability,
suggesting a better balance between performance and robustness.

TCN, and Hybrid models. It can be observed that the Bi-
LSTM model adequately follows the peaks and valleys of the
GRF curve, while the TCN model tends to smooth the peaks
and underestimate the maximum values. The Hybrid model, in
turn, demonstrates greater fidelity to the curve shape, capturing
the temporal variations of the GRF throughout the gait cycle
more accurately, reinforcing its superiority in adherence to the
actual signal.

C. Training Time

Table III shows the average training time per fold. TCN was
the most efficient, while Bi-LSTM, the most accurate, had
the highest computational cost. The hybrid model balanced
performance and training time.

Table III
AVERAGE TRAINING TIME PER FOLD

Model Average Time

Bi-LSTM 16 min 88 s
TCN 56 s
Hybrid 14 min 24 s

IV. CONCLUSION

This study proposed and evaluated a methodology for
estimating GRF using deep learning models trained on ac-
celerometer data from inertial sensors. Three distinct neural
network architectures were investigated: Bi-LSTM, TCN, and
a hybrid model combining both approaches. To ensure the
quality of the signals used in training and evaluation, data
normalization, low-pass filtering, and temporal segmentation
techniques were applied.

A cross-correlation analysis was conducted to identify the
sensor with the highest predictive potential, revealing that the
accelerometer positioned on the foot showed the strongest

correlation with GRF signals, supporting the choice of input
data used in the three models.

Quantitative results demonstrated the effectiveness of the
proposed architectures: the Bi-LSTM model achieved the
highest accuracy, the TCN stood out for its computational
efficiency, and the hybrid model achieved the best balance be-
tween performance and training time. Metrics such as RMSE,
rRMSE, and R2 confirmed the ability of the networks to
accurately capture the dynamic variations of GRF throughout
the gait cycle.

The ability to estimate GRF based on accelerometer data
and deep learning techniques opens up relevant pathways
for large-scale clinical and social applications. Clinically, this
approach can enable low-cost and non-invasive gait analy-
sis in non-laboratory or resource-limited environments, al-
lowing continuous monitoring of patients with neurological
or musculoskeletal conditions. Additionally, the portability
and accessibility of inertial sensors may support large-scale
screening and the detection of mobility impairments in elderly
populations, contributing to preventive healthcare strategies.
From a social perspective, integrating this technology into
wearable devices can provide individuals with feedback on
gait quality, encouraging their engagement in rehabilitation
and promoting greater autonomy during physical recovery.
Thus, the use of artificial intelligence-based models for GRF
prediction represents a step forward toward more accessible,
personalized, and biomechanically-informed health monitoring
solutions.

As possible future studies, expanding the dataset with
diverse populations, integrating attention mechanisms and
Transformer-based models, developing domain adaptation
strategies, and implementing the models in embedded real-
time systems could be explored. Investigating gait symmetry
and the models’ generalization capacity for the left limb also
represent promising directions.

In summary, this work provides a robust and accurate
solution for estimating GRF data by combining biomechanical
knowledge with the power of deep neural networks.
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