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Performance Bounds for Computational Models of
Visual Saliency 1in 360 Videos

Aline F. G. Sousa, Clebson I. S. Silva and Ronaldo F. Zampolo

Abstract— Estimating performance bounds can improve the
comparative analysis of saliency models by exposing their
strengths and weaknesses. This paper evaluates two approaches
for estimating bounds on immersive videos: Equator Bias and
Saliency Sum. For validation, we compare them with outputs
from two attention models — Spherical U-Net and DAVE —
using three metrics: AUC-Judd, NSS, and CC. Experiments were
conducted on 6 videos from the PAVS10K dataset, which includes
eye-tracking data from ~20 observers. Saliency Sum achieved
the best scores across all metrics, while Equator Bias scored
the lowest, indicating that both approaches have significant
potential for representing upper and lower performance bounds,
respectively.

Keywords— Visual attention modeling, immersive video, per-
formance bounds, performance metrics.

I. INTRODUCTION

Humans are intelligent multisensory creatures that have
attentional behavior, that is, they have the ability to detect and
focus on specific stimuli in a cluttered environment. In turn,
visual attention mechanisms allow to focus on salient regions
of a scene, saving important cerebral resources during visual
scanning. The phenomenon of visual attention has been studied
for over a century and is an interdisciplinary topic that involves
several fields of science, including psychophysics, cognitive
neuroscience, and computer science [1].

Computational models of visual attention are intended to
represent specific aspects of human visual behavior, being
generally designed to predict gaze fixation points [2] or to
detect salient objects [3].

Currently, we have witnessed the rapid diffusion of 360°
videos, also known as immersive or spherical videos. This
type of media offers the user the ability to control the viewing
angle in a 360° field, a truly immersive experience that
enhances viewer engagement. With this rapid spread, the
evaluation of visual attention models for immersive videos has
initially inherited procedures used for conventional content,
which require validation for the new format of media. Among
those procedures, there is the definition of lower and upper
performance bounds against which the resercher can compare
and characterize different saliency models.
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Considering its importance to better evaluate visual attention
models, this paper addresses the problem of establishing
performance bounds for 360° videos.

The lower bound serves as a criterion for rejecting models,
while the upper bound enables a more precise analysis of cost-
benefit balance. For example, when introducing a new metric
with high computational complexity, one can evaluate whether
the gain in terms of similarity to the ground truth justifies the
additional cost.

The main contribution of this work is the proposal and
evaluation of Equator Bias and Saliency Sum as lower and
upper performance bounds, respectively, for visual saliency
models in immersive videos. To the best of our knowledge,
this is the first time performance bounds for 360° videos have
been proposed and discussed.

II. RELATED WORKS
A. Evaluation of visual saliency models

The performance of a saliency model is assessed by com-
paring its output with ground-truth data — the latter generally
obtained by eye-tracking experiments and whose setups in-
volve a relatively large number of stimuli and subjects. The
output of a saliency model and the ground-truth map can be
both interpreted as heatmaps indicating the visual relevance of
pixels in a depicted scene. Alternatively, they can be also seen
as two-dimensional probability density functions. In this sense,
the similarity between ground truth and estimated saliency
maps would characterize the performance of a visual saliency
model, i.e., of how well such a model can predict salient
elements of a scene in respect with human viewers.

Next, we review some saliency models with emphasis
on the methodology used in their performance evaluation.
Starting with models for conventional video, we then move
to techniques proposed for immersive media.

Sidaty et al. [4] proposed an audiovisual saliency model
composed of three maps (spatial, temporal, and auditory), and
different fusion strategies to combine such information.

The authors used four performance metrics: area under the
ROC curve (AUC), Pearson’s correlation coefficient, Kullback-
Leibler divergence (KLdiv), and normalized scanpath saliency
(NSS).

The Multimodal Saliency model (MMS), proposed by
Min et al. [5], was developed for 2D videos, whose content
has audio information highly associated with the movement of
objects. The approach integrates spatial, temporal and sound
features. Six metrics are used in the performance evaluation:
AUC-Judd, AUC-Borji, shuffled AUC (SAUC), CC, NSS and
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earth mover’s distance (EMD). The performance of MMS is
compared with other visual saliency models like SalGAN [6],
SAM-VGG [7], DeepGaze2 [8], among others.

In [9], the Deep Audio-Visual Embedding (DAVE) model is
introduced. The proposal uses a deep neural network to inte-
grate visual and auditory information to predict salient regions
in 2D videos. The DAVE model was evaluated by five metrics,
namely AUC-Judd, SAUC, CC, NSS and similarity (SIM).
Besides, the authors adopt the use of performance thresholds
to improve their analysis and modulate their expectations. For
the lower bound, they consider the mean eye point (MEP),
which is based on the general tendency to fixate the center of
the screen. And for the upper bound, an approach called human
infinite takes subsets of the ground-truth data to estimate the
ideal human performance.

For immersive video, Xu et al. [10] proposed a deep
learning-based gaze prediction model that incorporates both
spatial and temporal information. The model was evaluated
using the mean intersection angle error as the main metric.
This metric measures the angular difference between the user’s
gaze prediction and the ground truth.

Cheng et al. [11] proposed a semi-supervised method for
predicting saliency in 360° videos using the cube padding
technique to avoid distortions and discontinuities in the projec-
tion of spherical images. The CP360 model is evaluated using
AUC-Judd, AUC-Borji, and CC. The results are compared with
baselines such as zero-padding.

Nguyen et al. [12] proposed a shift from traditional single-
viewport saliency models to a new panoramic saliency detec-
tion specifically tailored for 360° videos, called PanoSalNet.

In the absence of an eye-tracker the head mounted device,
the authors adopted a method similar to Abreu [13], using
head orientation as a proxy for gaze fixation. PanoSalNet was
evaluated using three performance metrics: sAuC, NSS, and
CC. No upper or lower performance bounds were mentioned
in the paper.

To summarize, we note that the evaluation of visual saliency
models for 360° videos is usually done through comparisons
with other models or by variations of the proposed model
itself with the support of performance metrics. Strategies and
metrics originally developed for 2D saliency models have been
adapted to the context of immersive videos, with few studies
validading such adaptations.

B. Methodologies for defining performance bounds

Previous studies [14] indicate that, regardless of the ob-
server’s task or whether the image features are centralized,
fixations tend to accumulate closer to the center of the 2D
scenes — an effect called Central Bias (CB).

CB reflects the general tendency for fixations to concentrate
in the center of the screen. This bias has been used as a
baseline [9] to evaluate the performance of visual attention
models in 2D videos. As discussed in [15], any effective
saliency model should outperform CB.

While CB is suitable for 2D images, it is considered
inadequate for 360° videos or images. In immersive videos,
viewers’ fixations are usually concentrated around the equator,

i.e., exhibiting an EB. This pattern may vary in specific
scenarios, but in general, EB remains predominant [16].

An approach for estimating an upper performance bound,
also for 2D videos, is the so called human infinite [9].
According to Judd et al., [15] humans are the best predictors
of other humans, considering visual tasks. Therefore, it is
believed that the saliency map obtained from the fixations of
an increasing number of observers (ideally infinite) converges
to the optimal predictor of the salient regions of a stimulus.

III. DEFINING PERFORMANCE BOUNDS FOR IMMERSIVE
VIDEOS

In this section, we detail our proposals for lower and
upper performance bounds for evaluating saliency models in
immersive videos, namely the Equator Bias and Saliency Sum,
respectively.

A. Equator bias

To calculate the version of equatorial bias adopted in
this work, we analyzed the fixation data available in the
PAVSI10K dataset [17]. This particular analysis is based on
two histograms showing the distribution of fixations, one
histogram in the longitudinal direction and another histogram
in the latitudinal direction, covering the entire dataset, i.e. all
fixations of all observers from the 67 videos in the dataset.
We then calculate the mean and standard deviation of the
longitude and latitude distribution, with which we determine
a 2D-Gaussian map

g(x,y):kexp{—l [(x_uw) +(y_ﬂy) ]}7 (1)

x Y

where x and y denote longitude and latitude in degrees, re-
spectively; o, and o, are longitudinal and latitudinal standard
deviations in degrees, respectively; and k is a normalization
factor.

Fixation averages remain relatively close to zero, -2.962 for
longitude and 4.669 for latitude. The latter suggests a tendency
towards values a little above than the horizontal line. The
standard deviation, in turn, indicates greater dispersion in the
longitudinal direction than in the latitudinal direction — 76.850
for longitude and 19.816 for latitude — thereby supporting the
existence of an Equator Bias.

Figure 1 shows the Equator Bias map generated for the
parameters calculated from the PAVS10K dataset.

Fig. 1: Two-dimensional Gaussian function generated from gaze statistics of
the PAVS10K dataset, representing the Equatorial Bias in immersive videos.

Even though generated by using the reference data, the map
in Figure 1 can be considered as ground-truth agnostic from a
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practical standpoint, due to the simplicity of its parameters
(means and standard deviations). The approach produces a
quite rough approximation of gaze patterns, which is indepen-
dent of specific video structures and can be used as a lower
performance bound for immersive videos.

B. Saliency sum

We also propose an approach to estimate an upper per-
formance bound for saliency models in 360° videos, called
Saliency Sum. In this approach, the saliency maps of all
observers (ground-truth data) are summed across the frames
of a video, whose resulting map is then normalized. This
process generates a single saliency map per video that is highly
dependent on the reference data.

The calculation of a saliency map according to this approach
is given by

F

Ssum = Z

Jj=1

N
> Sin ] )
k=1

where S, represents the saliency map (ground truth) in the
j-th frame of the k-th observer; N is the number of observers;
and I indicates the total number of frames in the video. An
example of Saliency Sum map for a video is shown in Figure 2.

Fig. 2: Example of a saliency map obtained by the Saliency Sum approach
applied to a 360° video.

IV. EXPERIMENTAL PROCEDURE

A. Dataset

In this investigation, we use the PAVS10K dataset [17],
which contains eye-tracking data from approximately 20 ob-
servers for each one of its 67 videos. The results discussed
in the next section were obtained using a subset of six
videos (Table I), comprising two examples from each of three
distinct classes: talking, music, and miscellany. The choice of
a stratified subset was motivated by the need to reduce running
time while maintaining the significance of the results.

TABLE I: PAVS10K subset main characteristics (FPS: frames per second)

File name Duration FPS #Frames  #Viewers
-JOQ4L6803xE-1 00°23” 29.97 690 21
-idLVnagjl-s 00°27” 29.97 825 24
-TCUsegqBZ-M 00'25”  25.00 625 20
-gTBInfK-0Ac 00’29~ 29.97 870 24
-RSYbTSTz91g 00’27 29.97 810 23
-gy4TI-6j5po 00’25~ 29.97 750 24

B. Generation of saliency maps

In this study, a saliency map for each frame is calculated
from the corresponding eye-tracking data in the PAVS10K,
following the standard procedure of convolving a Gaussian
function with the frame fixation map.

For 360° videos, the convolution is performed in the
equirectangular projection, as the isotropic Gaussian cannot
be back-projected onto a sphere [18]. However, it is important
to account for the latitude-dependent distortions inherent to the
equirectangular projection [19]. Figure 3 gives an example of
a frame, and its fixation and saliency maps.

Fig. 3: Examples of frame (top-left), overlay of the frame with its saliency map
(top-right), and corresponding fixation (bottom-left) and saliency (bottom-
right) maps.

C. Visual saliency models

The proposed performance bounds are tested with the help
of two visual saliency models:

1) Deep Audio-Visual Embedding model (DAVE): Tavakoli
et al. [9] designed a model to estimate saliency maps for 2D
videos. The approach is based on a dual encoder architecture,
which uses spatial and temporal attention mechanisms and
considers the interaction between visual and audio signals. Its
architecture comprises a two-stream 3D convolutional neural
network (3D CNN), in which the outputs of the video and
audio streams are fused to predict a saliency map of each
video frame.

2) Spherical U-Net model: Chuong et al. [20] proposed
a spherical convolutional neural network that preserves the
perspective of spherical signals, using a spherical kernel that
maintains data integrity during convolutions. The model com-
bines contraction and expansion paths with spherical convo-
lutions to predict saliency maps in 360° videos. The inputs
include the image of the current frame (3 channels) and the
saliency map of the previous frame, totaling 4 channels.

D. Performance metrics

For saliency modeling, performance metrics assess the sim-
ilarity between the output of a model and the ground truth.

Three metrics were selected for this work:

1) AUC-Judd: This metric determines the area under the
Receiver Operating Characteristic (ROC) curve, assessing a
model’s effectiveness in classifying regions of interest based
on human fixations. Scores range from O to 1, with values
closer to 1 indicating better performance.
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2) Normalized scanpath saliency (NSS): This metric mea-
sures the agreement between the predicted saliency map and
human fixations (ground truth). The NSS is calculated as
the mean of the standardized saliency values at the fixation
locations [21], as follows:

1 _
NSS(P,Q) =+ > PQP, 3)
with B
N=Y%,QF, P=140 “

where P and QP are the predicted saliency map and the
reference fixation map (ground truth); ¢ refers to the ¢-th pixel;
N is the number of fixations (ground truth); p(-) and o()
denote the mean and standard deviation, respectively.

NSS is a normalized metric, with positive values indicat-
ing that human fixations occur in regions of high predicted
saliency, i.e., the model is making a good prediction, and
negative values indicating fixations in regions of low saliency,
meaning the model is failing to correctly predict the areas of
interest.

3) Pearson’s correlation coefficient (CC): This metric
quantifies the linear relationship between the predicted
saliency map and the reference saliency map (ground truth).
Widely used in visual attention model evaluation, its values
range from -1 to 1, where values near 1 or -1 indicate strong
positive or negative correlation, respectively, and values near
0 suggest a weak correlation [22]. The CC is defined as:

cov (P, Q")
a(P)o (Q7)’
where ¢ refers to as the ¢-th pixel; P is the saliency map
representing the model; Q' denotes the reference saliency
map (ground truth); the operators cov(-) and o(-) refer to

the operators that calculate covariance and standard deviation,
respectively.

cC (P,QY) = Q)

E. Performance assessment

The metrics were calculated individually for each frame,
and the overall video score was obtained by averaging the
results across the frames. The original spatial resolution was
maintained to avoid distortions in the result, although this
increases computational complexity.

An important note regarding the equirectangular format,
in which the saliency maps are stored: since this projection
introduces pronounced geometric distortions in regions closer
to the poles, some counterbalance procedure is needed before
comparing saliency maps [21].In this sense, we followed the
method described in [19], which uses a sinusoidal function to
correct oversampled areas across latitudes.

V. RESULTS AND DISCUSSION

The Equator Bias and Saliency Sum approaches are pro-
vided in Fig. 4, where violin plots illustrate the variation of a
given metric across video frames for each proposed approach.
Note that, for the tested dataset and metrics, the candidate
approaches for providing lower and upper performance bounds
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Fig. 4: Scores for metrics: (a) AUC-Judd; (b) NSS; and (c) CC.

are coherent, in the sense that Equator Bias scores are lower
than those of the Saliency Sum.

Table II confirms such a consistency, presenting the scores
averaged across the six videos in the PAVS10K subset for
all metrics used. The saliency map generated by the Equator
Bias approach showed averaged lower scores across all tested
metrics compared to those of the Saliency Sum, which is
the desired outcome for candidates representing lower and
upper performance bounds, respectively. Table II also presents
averaged scores for DAVE and Spherical U-Net saliency
models. Both models were tested by using pre-trained versions
provided by their original authors and freely available on the
internet. The DAVE and Spherical U-Net models performed
as expected, with scores within the range given by the Equator
Bias and Saliency Sum approaches.

Figure 5 shows qualitative results, comparing the ground-
truth saliency map of a frame with the corresponding DAVE
and Spherical U-Net estimations.
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TABLE II: Performance assessment. The arrow 1 indicates that the higher the
metric value, the better the performance.

Approach/model AUC_I}/I?rlc;SS FCCT
Saliency Sum 0.9716 6.1479  0.4848
Spherical U-Net 0.9247 5.1508  0.4744
DAVE 0.8747 29034  0.2666
Equator Bias 0.8667 1.6611  0.1471

(b) ©

Fig. 5: Examples of saliency maps: (a) ground truth; (b) generated by DAVE
model; (c) generated by Spherical U-Net model.

VI. CONCLUSION

This work proposed two approaches for estimating lower
and upper performance bounds to evaluate saliency models for
immersive videos. The availability of such bounds can enhance
the assessment process of saliency models. On one hand,
models with performance scores falling below the lower bound
should be rejected. On the other hand, competing models with
scores close to the upper bound can be considered equivalent
and near-optimal solutions.

In a preliminary evaluation with a reduced dataset and
selected group of performance metrics, Equator Bias and
Saliency Sum approches generated scores consistent to lower
and upper bound estimators, respectively. The Equator Bias
approach generates a saliency map that, from a practical
standpoint, is agnostic to specific video content structures. This
approach is grounded in the general visual behavior observed
from eye-tracking data, where gaze points tend to concentrate
slightly above the horizontal line. The Saliency Sum, in turn,
depends on reference data and generates a sort of averaged
version of ground-truth saliency maps for each test video.

Despite our promising results, further investigation is neces-
sary to validate the proposed approaches. This includes utiliz-
ing an expanded dataset—such as the complete PAVS10K in
conjunction with other datasets—and incorporating a broader
set of performance metrics.

We are currently investigating the applicability of Human
Infinite in the context of 360° videos and plan to present the
results in future work.
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