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Optimization of STAR-RIS-assisted WET Systems
Based on IoT Device Selection

Rogério Pereira Junior, Victoria Dala Pegorara Souto and Richard Demo Souza

Abstract— In this paper, we evaluate a Wireless Energy Trans-
fer (WET) system assisted by a Simultaneous Transmission and
Reflection Reconfigurable Intelligent Surfaces (STAR-RIS) and
consider the concept of beamsharing, which allows IoT devices
to harvest energy even while others are actively being charged.
Then, determining the optimal charging sequence is critical,
as it directly impacts the total time required to charge all
devices. To tackle this challenge, we propose an Ant Colony
Optimization (ACO)-based approach to optimize the charging
order, minimizing the overall system charging time. Furthermore,
given that perfect Channel State Information (CSI) is challenging
and often unavailable in practical scenarios, we propose a design
methodology based on Statistical CSI (S-CSI) to optimize both
the beamforming at the power beacon (PB) and the phase and
amplitude configurations of the STAR-RIS elements. Our results
demonstrate that the proposed solution achieves near-optimal
performance and reduces the total charging time by at least
23% compared to a random selection benchmark.

Keywords— Wireless Energy Transfer, Ant Colony Optimiza-
tion, Beamforming.

I. INTRODUCTION

The growth of the Internet of Things (IoT) has highlighted
the need for efficient and reliable solutions to power devices,
especially in scenarios requiring uninterrupted operation [1].
Moreover, in certain environments, such as large agricul-
tural areas or remote locations, frequent access to battery
replacement or recharging is challenging, driving the need
for innovative solutions [2]. In this context, Wireless Energy
Transfer (WET) emerges as an appealing solution. The core
idea of WET is to wirelessly transmit energy to devices using
various techniques, such as solar, wind, inductive, and radio
frequency (RF) [2]. Among the different approaches, the RF-
based technique (RF-WET) stands out as the most compatible
with the objectives of this study. This is due to its compact
design, the simplicity of the hardware involved, and the ease
of implementation for multi-user systems since a single RF
signal can be simultaneously received by several sensors. Thus,
RF-WET offers greater scalability and enables the continuous
operation of IoT devices.

Although WET already represents a significant advance-
ment, its efficiency can be further enhanced by introducing
Reconfigurable Intelligent Surfaces (RISs), which consist of
passive elements that dynamically adjust signal characteristics,
such as phase, to optimize reflection and overcome obstacles
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or lack of line-of-sight (LoS) [3]. However, RISs only reflect
signals, limiting their use to devices on the same side of the
surface. In complex environments, like a mix of open areas and
enclosed spaces, this reflection is insufficient to power indoor
devices [4]. To overcome this, the Simultaneous Transmission
and Reflection RIS (STAR-RIS) was introduced, enabling
both reflection and transmission of signals, thus expanding
system coverage and supporting more diverse deployment
scenarios [4].

Despite the advantages of deploying STAR-RIS in WET
systems, one of the main challenges is the need for accu-
rate channel state information (CSI) to jointly design the
beamforming at the power beacon (PB) and to determine
the reflection and transmission coefficients of the STAR-RIS
elements [2]. Although perfect CSI (P-CSI) allows optimal
control of the PB and STAR-RIS beamforming, achieving it
in practical scenarios is challenging due to the high power
consumption required for CSI estimation and the high com-
putational demands to process this information [5]. Further-
more, the presence of STAR-RIS significantly increases the
complexity of the problem, since multiple channels need to
be estimated.

To overcome the challenges of perfect CSI (P-CSI) in WET
systems, statistical CSI (S-CSI) has been widely explored
in WET systems without STAR-RIS [6]-[8]. Specifically,
in [6], a beamforming strategy is developed using only average
channel statistics to power IoT devices through a multi-
antenna power beacon (PB). In [7], the authors propose a
power allocation method that incorporates fairness, ensuring
a minimum energy level for each IoT device and promoting
equitable distribution across clusters. In addition, in [8], a
beamforming design based only on S-CSI is proposed. The
proposed approach, called “beamsharing”, considers that IoT
devices can collect energy while other devices are being
charged which significantly reduces the total charging time of
all IoT devices. Finally, despite the advantages of the STAR-
RIS, [6]-[8] does not consider the STAR-RIS architecture.
Therefore, there is still a notable gap in the deployment of
STAR-RISs in WET systems. Most studies focused on STAR-
RIS have mainly addressed communication optimization [9]-
[11], with little attention to its application in WET systems.
Among the few studies that investigate the use of STAR-RIS in
the context of WET, the authors in [12] explore an integrated
scenario with Wireless Information Transfer (WIT). The work
assumes perfect CSI knowledge and seeks to maximize the
combined rate of two groups of sensor nodes connected to an
access point.

To fill the gap in the literature, in this paper, we investigate
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the integration of STAR-RIS into WET systems. Specifically,
the main goal of this paper is to minimize the total charging
time required to meet the minimum energy requirements of
all IoT devices. As we consider the beamsharing concept
proposed in [8], to achieve the paper’s goal, it is necessary
to define the charging order of the IoT devices, which is a
difficult problem to solve due to the number of IoT devices.
Therefore, we propose an emerging solution based on the Ant
Colony Optimization (ACO) technique to define the subopti-
mal charging order of the IoT devices, which minimizes the
total charging time of the system. In addition, the proposed
solution optimizes the beamforming at the PB and the phase
and amplitudes at the STAR-RIS based only on the S-CSI
knowledge, which is viable in practical scenarios. Finally,
the results demonstrate that the proposed approach effectively
reduces the total charging time of IoT devices by efficiently
utilizing the beamsharing effect. The main contributions of
this work are: (i) A novel ACO-based strategy is proposed
to minimize the total charging time using only S-CSI; (ii) It
is shown that appropriate selection of the charging sequence
significantly outperforms existing benchmarks in reducing
system recharge time; and (iii) It is highlighted that poor
device selection can substantially increase the overall charging
duration, even surpassing the time required by a random
selection strategy.

II. SYSTEM MODEL

In this paper, we consider a scenario where a PB, equipped
with a Uniform Linear Array (ULA) composed of N antennas,
transfers energy to K devices with the help of a STAR-RIS
composed by M elements. We adopt analog beamforming at
the power beacon (PB), which restricts the PB to generating a
single beam at any given time. The total number of IoT devices
in the system is denoted by K = K, + Ky, where K, and K
represent the number of devices located on the reflection and
transmission sides of the STAR-RIS, respectively. Devices on
the reflecting side, referred to as “r-device”, are represented
by the set R € {1,2,..., K,}, while those on the transmitting
side, referred to as “t-device”, are represented by the set 7 €
{1,2,..., K}

In addition, we define wj, € CV*! as the beamforming at
the PB pointed to the k-th device and ®" € CM*M is the
diagonal matrix that defines the reflection and transmission
pattern of STAR-RIS for the k-th device with p € {r,t}. We
can express (-)gf ) as follows

0  ding ( SRR mewé'ﬁw) W

where B,@n € {0,1} and 9,(5; € [0,27) represent the
amplitude and phase of the transmission and reflection STAR-
RIS’ coefficients, respectively. The phase adjustments of the
transmission and reflection coefficients can be optimized inde-
pendently, enabling individual control of the beams. However,
the signal amplitudes are coupled by the law of energy
conservation, i.e., ﬁ,(cr)m + ﬂ,(;)m =1Vme{l,...,M} [4].
The power received by the k-th device on the reflection side
when the j-th device is being charged, i.e., the beamforming

vector at the PB is designed to point to the j-th device, can
be expressed as

2
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where &pp,, &pr, and Erp, denotes the path-loss of the link
between the PB and the IoT devices (PD), PB and STAR-
RIS (PR), and STAR-RIS and devices (RD), respectively. In
this paper, we consider the log-distance path-loss for all links,
ie, &, = 1od;® where { € {RD,PR,PD}, d; > 1 is
the distance between the involved network elements, «y is the
path loss exponent of each link, A = % is the wavelength
with ¢ being the speed of light and f the carrier frequency.
Moreover, pj. € C'*Y and v;! € C'*M denote the channel
vector between the PB and the k-th IoT device and between the
STAR-RIS and the k-th IoT device, respectively. In addition,
H ¢ CM*N denotes the channel matrix between the PB and
the STAR-RIS. Similar to (2), the power harvested by the k-th

device on the transmission side is given by

P, lgr; = &rpy,
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In this paper, all channel links are modeled according to the
Rician fading model which can be given by

KPR — 1 ~
H= /— 2 H+,/ H, 4
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where kpp is the Rice factor, H € CM*N represents the NLoS
components modeled with Rayleigh fading and H € CM*V
represents the LoS components of the channel matrix. Finally,
px and v are modeled in the same way as H in (4) and kpg
is replaced by xpp or xrp for pg and vy, respectively.

Therefore, the energy collected by the k-th IoT device
considering beamsharing is given by

k-1
Oy = [tk (Pkik_ 5(2)} + ‘ Z t; {Fkij_ (l;ﬂ}, (5)
=17 R e e s
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where Qj denotes the energy harvested by the k-th IoT
device when the beamforming vector is designed to the k-
th IoT device and Q; is the total energy harvested by the
k-th IoT device while the j-th device is being charged. It is
important to highlight that j and k denotes the index of the
IoT devices in the reflection or transmission plane, i.e., if the
k-the IoT device is in the reflection side, Q; for the k-th
device is computed only considering the neighboring devices
in the reflection plane (j,k € R). The same consideration
is done for k € 7. Moreover, t;, and t; denote the time
in which the PB is focusing on the k-th or j-th device,
respectively. 2 = Hﬁ is a constant that ensures a zero-
input/zero-output response, where a and b are parameters that
model the specific characteristics of the circuit. Furthermore, p
represents the maximum power that the IoT device can harvest
when reaching saturation, limiting its ability to store energy
efficiently [13]. Finally, I'y ; denotes the traditional logistic
function, which is given by

I
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A. Optimization Problem

The main objective of this paper is to minimize the total
time required to charge K IoT devices (tr = S 4, tx) by
optimizing the beamforming vector at the PB (wy;), the phase
and amplitude of the STAR-RIS’ elements (@? and G),(;)),
and the time allocated for each IoT device (tx). To minimize
tt, we consider the minimum energy constraint for each IoT
device, analog beamforming constraint, and the conservation
of energy law constraint for the amplitude of the STAR-RIS-
RIS’ elements. Then, the proposed optimization problem is

K
Minimize tr = tr

(b {00 {00} {tx} kzzl

Subject to O, > E,Vke{l,...,K}

P
lwin|” = WT Vne{l,...,N},

O B =1Vme{1,..., M},

tr >0, Vk,
(7

where E}, is the minimum energy constraint of the k-th device,

and |wkn|2 = ?V—T denotes the analog beamforming constraint,
and B,(cr)m + ﬁ,;}m = 1 is the conservation of energy law

constraint for the amplitude of the STAR-RIS-RIS’ elements.
To find the optimal solution of (7) it is necessary to have
perfect knowledge of the CSI, which becomes a challenge for
WET systems especially due to the energy and time constraints
in the estimation process [14]. In this sense, we will use only
the knowledge of the S-CSI since it is a simpler and more
practical approach.

The channels between the PB and the IoT devices on the
reflection side of the STAR-RIS are assumed to be quasi-
blocked. Consequently, the PB’s beamforming vector is de-
signed to direct energy toward the STAR-RIS, following the
Equal Gain Transmitter (EGT) method [8], and is given by

T
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where wy, is computed based on the sum of the M channels
for each of the IV antennas at the PB.

For the STAR-RIS, we adopt a scenario known as uniform
power division [4], where the transmission and reflection
amplitude coefficients of the STAR-RIS elements are equal,
that is, ﬂ,(fj Bn = AW Furthermore, the STAR-RIS operates
based on the Time Switching (TS) protocol [4]. In this
protocol, the surface alternates between two main phases:
transmission and reflection. Thus, the incident signal is not
divided into two parts simultaneously; all the energy of the
incident signal is used exclusively in one mode at a time (re-
flection or transmission). Therefore, the amplitude coefficient
B®) is equal to 1 during the time interval applied to each
mode. The choice of the time-switching protocol was made to
exploit the full potential of STAR-RIS in the charging process,
allowing both sides (transmitter and reflector) to utilize all the
surface resources during a dedicated time interval. As for the
phase adjustments of these coefficients, they are determined

by means of an optimal continuous adjustment, that is, they
are adjusted to compensate for the phase of the channels,
according to

6\ — /v, — /Awy, )
where 87 = 9,2’27 - .,9,(6%1] € CMx1 is the phase adjust-

ment vector of the STAR-RIS’ elements.
Therefore, substituting (8) and (9) into (7), the suboptimal
allocated time for each IoT device can be computed by

= {Ml for k =1, (10)
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Equations (10) and (11) show that the charging order of
IoT devices directly affects the total charging time due to
the beamsharing effect, represented by the term ();. Devices
can continue to accumulate energy while others are being
charged, making an optimal sequence crucial for efficiency.
To address this, a new strategy is proposed to optimize the
charging process.

III. PROPOSED APPROACH BASED ON ACO

To minimize the total charging time tp, it iS necessary
to determine the optimal charging order for IoT devices.
To achieve this, we propose a novel approach based on the
Ant Colony Optimization (ACO) technique [15]. ACO is an
optimization technique based on the collective behavior of ant
colonies, which find more efficient paths by leaving chemical
trails called pheromones. Over time, the most efficient paths
in terms of lower cost or higher efficiency (such as shorter
distance or time) accumulate more pheromones, encouraging
more ants to follow them [15]. The artificial ants construct
solutions based on probabilities, influenced by two factors: the
pheromone 7; ;, which reflects the quality of the path between
position 7 and [, and the heuristic 7;;, which represents
problem-specific information such as distances or times. Then,
the probability of an ant n choosing a device [ when leaving
device ¢ is given by [15]

s (R

o Dokek Tk n:bk
where o and v are parameters that control the influence of the
pheromone and the heuristic, respectively. Moreover, after the
ants construct their paths, the pheromone is updated to reflect

the quality of the solutions found. Therefore, the pheromone
is updated based on [16]

; 12)

L
Tia=1—=p) Tii+ > AT, (13)
n=1
where p is the pheromone evaporation rate, which decreases
over time, while L represents the number of ants used. The
term A7;; is the amount of pheromone added on the path
between device ¢ and [ by ant n, calculated based on the
quality of the solution found (the better the solution, the
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greater the increase in pheromone). The process is repeated
until the stopping criterion is reached.

The main steps of the proposed solution based on ACO
algorithm to define the suboptimal selection order of the IoT
devices which minimize ¢t are described next.

1) Initialize ;; with values equal to 1.

2) Construct the charging sequence for each ant from (12).

3) For each defined sequence, the beamforming vector at the
PB and the STAR-RIS coefficients for each IoT device
are determined based on (8) and (9), respectively.

4) The charging time of each device is defined based on (10)
and (11), obtaining total charging time (¢t).

5) Save the sequence that obtained the lowest tr.

6) Update pheromone trails from equation (13).

7) Check the stopping criterion: If the maximum number
of iterations is reached or the solution does not improve
significantly, the algorithm execution is terminated. Oth-
erwise, return to Step 2.

As only S-CSI is considered, the algorithm relies solely
on the LoS component of the channels, which may lead to
suboptimal charging performance and the risk of some devices
not meeting the minimum power requirement. To address
this, the proposed solution is executed iteratively until all
devices confirm, through the control channel, that they are
fully charged.

IV. RESULTS AND DISCUSSIONS

In this section, we present the simulation results considering
a STAR-RIS positioned at the center of the 2D plane with
coordinates (zg,yr) = (0,0). The PB is fixed on the reflection
side of STAR-RIS, located at a distance of 10 meters from
STAR-RIS, at coordinates (xpg,ypg) = (—10,0). The IoT
devices are evenly distributed between the reflection and
transmitting sides. In addition, the K devices on the reflection
side are arranged in a square structure of 3 meters wide.
Finally, unless otherwise stated, the simulation parameters are:
Ky =5 N =6, M = 64, f = 915 MHz, u = 10.73
mW, a = 0.2308, b = 5.365, By, = 10 pJ Vk € {1,..., K},
app = 3.5, apr,orp = 2.4, kpp = 0.2, kpr and krp = 1.5,
p=0.3,0=15,¢ =2, and L = 20. The results presented
in this section were obtained using Matlab®, and the curves
represent the average of 103 independent channel realizations
and 5 different topologies.

In addition, to evaluate the proposed solution S-CSI
(Beamsharing/ACO), we consider the following benchmarks:
(i) S-CSI (Beamsharing/Random Selection), where the se-
quence of devices to be charged is chosen randomly; (ii)
S-CSI (Beamsharing/Near), where the devices in the reflec-
tion/transmission side of the STAR-RIS are selected based
on the shortest distance from the PB/STAR-RIS; and (iii)
S-CSI (Beamsharing/Far), where the devices in the reflec-
tion/transmission side of the STAR-RIS are selected based
on the farthest distance from the PB/STAR-RIS; It is im-
portant to highlight that these benchmarks consider that the
beamforming at the PB and the phase and amplitude of the
STAR-RIS’ elements are designed based only on the S-CSI
knowledge. However, to obtain a lower bound of the proposed

solution, we consider the P-CSI (Beamsharing/ACO) and P-
CSI (Beamsharing/Random Selection) benchmarks where the
devices are selected to be charged as previously described
while the beamforming at the PB and at the STAR-RIS is
designed based on the P-CSI knowledge.

To illustrate the impact of the number of IoT devices,
Figure 1 depicts the ¢1 as a function of the number of
IoT devices (K) for M = 64, N = 6 and K, = 5.
In this analysis, we fix K; = 5 and vary the number of
IoT devices on the reflection side of the STAR-RIS, i.e.
K, € {5,10,15,20,25}. From the results, we can observe that
the proposed solution S-CSI (Beamsharing/ACO) achieves a
close-to-optimal total charging time for all K configurations.
Specifically, for K € {10, 15,20, 25,30} the proposed solu-
tion reduced tr by 19.0%, 16.3%, 15.6%, 15.4%, and 15.0%
compared to the S-CSI (Beamsharing/Far) benchmark. This
outcome stems from ACQO’s capability to optimize the charging
sequence, minimizing efficiency by effectively leveraging the
potential of beamsharing. In addition, the results highlight the
importance of developing novel solutions to smartly define
the charging order of the IoT devices as, if the devices are
randomly selected, the ¢t increases by up to 24.2%, 23.8%,
23.5%, 23.3%, and 23.0% for K € {10, 15,20, 25,30} when
compared to the proposed solution.

=@~ S-CSI (Beamsh:
=~ S-CSI (Bea
2l ~o~ P-CSI (Be:

S-CSI
- S-CSI
P-CSI

tr (min)

5 2 % 30
Number of ToT devices (K)

Fig. 1: tr versus K for M =64, N =6 and Kt = 5.

I
10 1

Figure 1 shows that the benchmark S-CSI (Beamshar-
ing/Far) closely matches the performance of the proposed
solution. This is because directing beamforming towards the
most distant [oT device allows intermediate devices to harvest
energy through beam scattering, reducing the total charging
time. In contrast, S-CSI (Beamsharing/Near) performs worse,
as devices closer to the STAR-RIS and PB are at small
angles to the main beam, reducing beam scattering and energy
harvesting. Overall, the results confirm that the proposed
solution achieves near-optimal performance with only S-CSI
knowledge, highlighting its practical feasibility in real-world
scenarios.

Figure 2 illustrates the impact of the number of STAR-
RIS elements (M) on tt. The results show that increasing M
consistently reduces ¢t across all benchmarks. This behavior
is due to STAR-RIS’s ability to focus energy beams toward
IoT devices, enhancing transmission gain and optimizing en-
ergy harvesting. Furthermore, the proposed solution achieves
a reduction in ¢y by up to 13%, 15%, 16.5%, 20%, and
15% for M € {36,49,64,81,100} compared to the random
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selection approach. This further underscores the importance of
the proposed solution in intelligently determining the optimal
charging order for IoT devices. Finally, the results confirm
that the proposed solution maintains near-optimal performance
even for large M, highlighting its effectiveness in practical
scenarios.

35, T T

T
=@~ S-CSI (Beamsharing/Near)
=@~ S-CSI (Beamsharing/Random Selection)

=&- P-CSI (Beamsharing/Random Selection) | |
S-CSI (Beamsharing/Far)

=e— S-CSI (Beamsharing/ACO)
P-CSI (Beamsharing/ACO)

30

tt (min)

ES m o1 81 100
Number of STAR-RIS elements (M)

Fig. 2: ¢ty versus M for N =6, K, =5, and K; = 15.

Finally, Figure 3 demonstrates that increasing the number
of PB antennas (V) reduces tp, due to improved beam
directivity and more efficient energy delivery to IoT devices
and the STAR-RIS. However, the reduction in ¢ becomes
less significant as N increases, since concentrated beams
reduce dependence on beamsharing. This suggests that in high-
capacity PB scenarios, the charging sequence has less impact.
Despite this, the proposed ACO-based solution consistently
outperforms all benchmarks, achieving the lowest charging
times for all values of N.

30 T

T

—e— S-CSI (Beamsharing/Near)

=~ S-CSI (Beamsharing/Random Selection)

=&— P-CSI (Beamsharing/Random Selection)

25 S-CSI (Beamsharing/Far) al

=&~ S-CSI (Beamsharing/ACO)
P-CSI (Beamsharing/ACO)

t (min)

| |
4 6 8 10

Number of antennas on the PB ()

Fig. 3: tp versus N for M = 64, K; =5, and K; = 15.

V. CONCLUSION

This paper presents a novel solution based on the ACO
algorithm for a WET system assisted by a STAR-RIS. The
proposed method operates solely with S-CSI, thereby reducing
computational complexity and making it suitable for practical
scenarios where P-CSI is difficult to obtain. ACO is utilized
to determine the optimal charging sequence of IoT devices
by exploiting the beamsharing effect to minimize the total
charging time. The results validate the proposed approach’s
efficiency in enabling effective energy transfer. As directions
for future research, we intend to analyze the influence of
PB positioning on system performance and explore alternative
device selection strategies, such as reinforcement learning and
clustering techniques, to further optimize charging efficiency.
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