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Abstract— The emergence of deep learning (DL) in wireless
communications has revolutionized the design of transceivers, en-
abling end-to-end learning-based systems such as autoencoders.
Unlike traditional communication systems that rely on separately
optimized blocks for encoding, modulation, and decoding, an
autoencoder jointly optimizes the transmitter and receiver, lead-
ing to potentially more efficient and adaptive communication.
However, the performance of such architectures under practical
fading conditions remains an open research question. This paper
investigates the block error rate (BLER) performance of a
convolutional neural network (CNN)-based autoencoder under
a generalized fading model. Specifically, we adopt the x-u fading
model due to its flexibility in representing various real-world
fading scenarios. We also analyze classical modulation schemes’
analytical BLER under the same fading conditions to establish
a meaningful comparison. Through simulations, we demonstrate
that the CNN-based autoencoder efficiently adapts to different
fading environments while maintaining robust performance,
showcasing its potential as a viable alternative to conventional
communication system designs.

Keywords— Deep Learning, Autoencoder, Convolutional Neu-
ral Network, Wireless Communication, Fading.

I. INTRODUCTION

Wireless communication systems continuously evolve to
meet the increasing demands for reliability, efficiency, and
adaptability in diverse and challenging environments. Tradi-
tional communication architectures are based on well-defined
signal processing blocks such as modulation, channel cod-
ing, and equalization, which are designed and optimized
independently [1], [2]. However, these conventional systems
often struggle to perform optimally under complex fading
conditions.

Autoencoder-based architectures have been proposed as an
alternative to traditional communication systems, leveraging
DL to learn the entire transceiver process as an end-to-
end optimization problem. The work in [3] introduced the
concept of communication systems modeled as autoencoders,
demonstrating that such systems can achieve competitive
BLER performance compared to classical methods. Further
extensions explored the integration of adversarial networks
to enhance multi-user communication and the application of
CNNs for modulation classification, achieving performance
comparable to feature-engineered approaches [3].
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DL has also been applied to wireless communication chal-
lenges, such as channel estimation and mitigation of interfer-
ence. In [4], a convolutional denoising autoencoder with an at-
tention mechanism was proposed to predict channel conditions
in intelligent reflecting surface (IRS)-assisted millimeter-wave
communications, showing significant improvements in signal
quality and energy efficiency. Similarly, [5] investigated an
autoencoder with a fitting network for Terahertz (THz) com-
munication, demonstrating its viability to mitigate hardware
imperfections and channel distortions.

Another important line of research focuses on the robustness
of autoencoder-based communication systems under practical
channel conditions. The work in [6] proposed a DL-based
channel estimation technique for chaotic wireless communi-
cation, leveraging a stacked denoising autoencoder to improve
resilience against noise. Similarly, [7] validated the feasibility
of over-the-air communication using purely neural network-
based transceivers, achieving competitive BLER performance
against traditional schemes. Furthermore, [8] introduced a
differential autoencoder design for optical wireless communi-
cation, optimizing constellation points to minimize shot noise
effects and improve bit error rate (BER) performance. The
performance analysis for an autoencoder under the o~y chan-
nel was made in [9], and [10]. A CNN-based architecture was
employed in [9], assuming perfect channel state information
(CSI) at the receiver. In contrast, [10] extends the analysis to
a more complex fading environment incorporating shadowing
and mobility effects using a dense neural network (DNN)-
based architecture.

Despite these advancements, a comprehensive study on the
BLER performance of CNN-based autoencoders under gener-
alized fading conditions remains an open research problem.
Most prior studies have focused on specific fading models
or have not evaluated autoencoder-based systems in highly
dynamic channel environments. This paper addresses this gap
by investigating the performance of a CNN-based autoencoder
under the x-p fading model, which represents various real-
world fading conditions. The main contributions of this paper
are as follows: i) We analyze the BLER performance of a
CNN-based autoencoder in k- fading conditions, ii) We com-
pare the CNN-based autoencoder’s BLER performance with
analytical results for classical modulation schemes under the
same fading conditions, and iii) We present simulation results
demonstrating that the CNN-based autoencoder efficiently
adapts to different fading environments while maintaining
robust communication performance.

The rest of this paper is structured as follows. Section II
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reviews related work in DL-based communication systems and
autoencoder architectures. Section III describes the channel
model. Section IV presents performance analysis and simula-
tion results. Finally, Section V concludes the paper.

II. AUTOENCODER-BASED END-TO-END
COMMUNICATION SYSTEM

A conventional point-to-point communication system com-
prises three primary components: the transmitter, the channel,
and the receiver. The transmitter conveys a message m over
the channel to the receiver, where the message consists of a
sequence of L symbols (block length), each symbol encoding
k information bits. Consequently, the number of discrete
channel uses is denoted as n, and the system’s transmission
rate is defined as R = k/n (bits per channel use). The
transmitter applies a transformation function z = f(m) € C”,
generating the transmitted signal x.

Transmitter hardware typically imposes constraints on z,
which in this study is represented as a power constraint
||z||> < n. The channel is modeled as a stochastic system,
where the received signal follows a conditional probability
function y ~ p(y|z), with y € C™ representing the received
signal. The receiver then applies a transformation m = g(y)
to estimate the original message m with minimal error. Within
the DL framework, the transmitter and receiver are referred to
as the encoder and decoder, respectively, and are implemented
using neural networks, as depicted in Fig. 1.

A feedforward neural network establishes a mapping
f(wo; W) : RNo — RNZ from an input vector zo € R0 to an
output x7, € RVt through L processing layers. This mapping
depends on parameters (or weights) W = Wy, Wy, ..., W,
and the preceding layer’s output.

This work considers convolutional layers, where each layer
consists of F' filter weights Qf € R**® for f = 1,...,F,
generating a feature map Y/ € R™ *™" from an input matrix
X € R™™ ™ based on the convolution operation:

a—1b-—1
Fo_ f
Y0 =23 Qv nXatsti-n-karsG-n-n, (D
k=0 1=1

where s > 1 represents the stride parameter, and the output
dimensions are given by

n =1+ {WJ )
s
and b_2
m =1+ {m_:_J ) 3)

A CNN-based autoencoder is employed, as illustrated in
Fig. 1. The convolutional layer, governed by (1), enables the
transmitter to process sequences of symbols S, handling k£ x L
bits in parallel. Each symbol in S is encoded as a one-hot
vector O, € Rzk, where a single element is set to one while
the rest remain zero.

To facilitate both linear and nonlinear block encoding of
the input sequence, exponential linear unit (ELU) activation
functions are utilized in the convolutional layers, transform-
ing the one-hot input sequence S into a new representation

TABLE I
AUTOENCODER LAYOUT

Block Layer Activation Output Dim.
Input L x 2k
ConvlD ELU L x 256

Encoder ConvlD ELU L x 256
ConvlD LINEAR L x2n
Normalization L x2n

Channel Fading + Noise L x2n
ConvlD ELU L x 256

Decoder  ConvlD ELU L x 256
ConvlD SOFTMAX L x 2F

X = f(S) across n channel slots. This results in signal

constellation points mapped into a 2n-dimensional space. Each
convolutional layer is followed by batch normalization to
enhance network stability, employing 256 filters to optimize
the representation of input symbols.

Normalization layers enforce transmitter power constraints
by mapping symbol representations into a 2n-dimensional
space, considering that each of the n channel slots consists of
in-phase and quadrature (I/Q) components. The channel layer
follows the conditional probability density function p(Y'|X)
based on a k- distribution, discussed further in the subsequent
section. Additionally, additive white Gaussian noise (AWGN)
with variance 02 = (2RE;/Ny) ™" is introduced, where R =
k/n represents the transmission rate, and Ej, /Ny denotes the
signal-to-noise ratio (SNR).

The receiver adopts an architecture similar to the transmitter
but omits the normalization layer. It reconstructs the received
signal Y to classify each signal among 2* possible candidates.
Perfect CSI is assumed to be available and integrated into the
receiver network alongside Y. A soft decision approach uses a
softmax activation function, which outputs a probability vector
over all possible input sequences S. The final transformation
is denoted as S = g¢(Y), corresponding to the index of
the highest-probability element in the output vector. Table I
summarizes the autoencoder configuration used in this work.

The objective of this self-learning system is to determine the
optimal set of parameters WW* that minimizes the loss function
J(W), given by

W* = arg mmi/n J(W). 4)
The optimization is performed using stochastic gradient

descent (SGD), initialized with random weights W = W),
and iteratively updated as follows:

Wis1 = Wy — Vo J (W), (5)

where 17 > 0 is the learning rate, and V,, represents the
gradient of the approximated binary cross-entropy (BCE) loss
J(W), computed for a randomly selected minibatch N; C

1,2,..., N of size N, at each iteration:
~ 1
JW) = -5 ie}; Silog(g(Y7))- ©)
t

The loss is optimized via backpropagation over the
dataset of size N, facilitating improved performance of the
autoencoder-based communication system.
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Fig. 1. [End-to-End communication system as an autoencoder.

III. CHANNEL MODEL

The x-p fading model represents a generalized statistical
distribution that characterizes small-scale variations in fad-
ing signals under line-of-sight (LOS) and non-line-of-sight
(NLOS) conditions. Unlike conventional models, the k-u
distribution accounts for both multipath wave clusters and the
non-linearity of the propagation environment. Several well-
known fading models, such as the Exponential, Rayleigh,
Nakagami-m, Gamma, and Weibull distributions, are special
cases of the k-p distribution. The parameter ~ describes
the power ratio of dominant components to scattered waves,
whereas p represents the number of multipath clusters. Conse-
quently, the signal envelope follows a nonlinear function based
on the sum of multipath components, expressed as

n n
r? = Z(Jh +pi)? + Z(Zh +a)°,

i=1 i=1

)

where x; and y; are independent Gaussian processes with
expectations E(z;) = E(y;) = 0 and variances E(2?) =
E(y?) = o2. Additionally, p; and ¢; denote the mean values
of the in-phase and quadrature components of the multipath
clusters.

Given a fading signal with envelope r and normalized
envelope p = r/#, where + = +/E(r?) represents the
root-mean-square (RMS) value of r, the probability density
function (PDF) of p is defined as [11, eqn.(1)]

2u(1 =
Mm=liJ€L (%v p)
(8)

where « > 0 is the ratio of the total power of dominant
components to that of scattered waves, and p > 0 is given
by

et —p(1+k)p? [

E2(r?)
Var(r2)

1+ 2k(1 + k)2
(1+r)?

2
Furthermore, the constraint ‘ﬁ%’? > % must hold. Here,

I,,(.) denotes the modified Bessel function of the first kind of
order v.

Several well-known fading models can be derived as special
cases of the k-u distribution. The Weibull distribution is
obtained by setting ¢ = 1 and adjusting x accordingly. The
Rayleigh distribution emerges when p = 1 and k = 0. The
Nakagami-m distribution is a specific case of the x-u model
where k = 0, with m representing the multipath clusters.
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A. BLER in k-p Fading Channels

To derive the BLER for flat x-u fading channels, we define
the instantaneous SNR as v = R?, where R represents the
fading envelope, the average SNR is given by: ¥ = E[v].

By applying standard transformation techniques for random
variables from p, the probability density function (PDF) of ~
is expressed as

2u(1 + ) HHD/2 /21

HO) = T explun) ! (10)
x e~k "1 (2p/K(1 + k)Y
The unconditional error probability P, is defined as
Pe= [ pe(Mfy(v)dv, (11

0

where p.(7y) depends on the modulation scheme. For in-
stance, in Coherent M-ary quadrature amplitude modulation
(MQAM) modulation schemes, the error probability is approx-
imated as

3ylog, M
pe(v)—Q< T ) (12)
where Q(.) represents the Q-function, defined as Q(z) =
= [ exp(—u®/2)du, and M is the modulation order. For
binary phase shift keying (BPSK) and quadrature phase shift
keying (QPSK) systems, the error probability can be approx-
imated as

(13)

IV. PERFORMANCE ANALYSIS

This section presents a detailed evaluation of the CNN-
based autoencoder’s performance under x-u fading conditions,
focusing on BLER results obtained from the simulation fig-
ures. The training dataset used to develop the CNN-based
autoencoder consists of 16000 training messages and 80000
validation messages, each containing a block length of L
symbols and each symbol conveying %k information bits. The
training SNR was set to Ej, /Ny = 30 dB to ensure robustness
in high-SNR regimes. The training process utilized the Adam
optimizer to facilitate rapid convergence, with a learning rate
of n = 0.001, and mini-batches of size 64 were employed to
ensure stable learning dynamics. The dataset was generated
using independent and identically distributed (i.i.d) binary
sequences drawn from a uniform distribution.
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Fig. 2. Average error rate under the variation of parameter y for fixed n = 1,
(@k=2and x —0,and (b) k=1and Kk = 1.

Fig. 2(a) illustrates the impact of the multipath clustering
parameter i on BLER performance for different values of
w, with a fixed ¥ = 2 and n = 1, under the condition
where x — 0, representing a Nakagami-m fading scenario.
Theoretical BLER curves for QPSK modulation are provided
as a benchmark. As expected, increasing y results in improved
BLER performance, as larger values of p correspond to less
severe fading conditions. Fig. 2(b) presents results for a
similar scenario but with k¥ = 1, n = 1, and x = 1. The
theoretical BLER curve for BPSK modulation is included for
comparison. The results indicate a similar trend to Fig. 2(a),
where increasing u leads to enhanced BLER performance. The
CNN-based autoencoder exhibits robustness across varying
fading conditions, adapting to different power distributions and
matching the performance of the theoretical BLER.

Fig. 3 examines the effect of varying the power ratio
parameter x on the BLER performance while maintaining
pw =2,k =1, and n = 1. The theoretical BLER for BPSK
modulation is included for reference. The results confirm
that the fading conditions improve as « increases, leading to
lower BLER values. The CNN-based autoencoder is shown to
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Fig. 4. Average error rate under the variation of parameter k.

match the theoretical BPSK BLER performance, suggesting
that the system can learn optimal symbol mapping strategies
for different power ratios without requiring explicit channel
modeling.

Fig. 4 explores the impact of increasing the number of
transmitted information bits k£ on the BLER. It compares
different values of k& and n while maintaining x = 2 and
p = 2. The theoretical BLER curves for 16-QAM and
QPSK modulation schemes are also included for validation.
The results highlight that increasing the number of bits per
transmission results in a degradation in BLER, as expected.
However, the CNN-based autoencoder successfully adapts to
these conditions and maintains performance close to traditional
modulation schemes, demonstrating its robustness in higher
data rate scenarios.

Finally, Fig. 5 analyzes the learned constellation points for
R = 2, showcasing the autoencoder’s ability to self-organize
its symbol mappings under x-p fading conditions. The plotted
constellation diagram suggests that the autoencoder learns a
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Fig. 5. Example of learned constellation.

QPSK-like structure with an arbitrary rotation, confirming that
the system optimizes symbol placement to minimize decoding
errors. This result further supports the adaptability of the
CNN-based autoencoder in dynamic channel environments.

V. CONCLUSIONS

This paper investigated the BLER performance of a CNN-
based autoencoder as an end-to-end communication system
adapted to the generalized k-p fading model. The system
was trained under various fading conditions and successfully
learned optimal encoding and decoding strategies, achieving
performance close to modulation schemes.

The results indicate that the CNN-based autoencoder can
dynamically adapt to different multipath and power ratio
parameters, demonstrating robustness under varying channel
conditions. By learning optimal symbol mappings, the model
matched the performance of conventional modulation schemes,
such as QPSK and BPSK, across a range of SNR values.
Moreover, the analysis of learned constellations highlighted
the system’s ability to optimize symbol placement, further
validating its adaptability to complex fading environments.

One of the key challenges in designing practical wireless
communication systems is ensuring a sufficient link margin
to account for stochastic variations in SNR. The proposed
framework offers a flexible and adaptive approach that can
dynamically adjust to real-world channel conditions, poten-
tially reducing the complexity of system planning and resource
allocation. The ability of DL-based systems to generalize over
different block lengths, code rates, and channel uses further
supports their viability for next-generation wireless networks.
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