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DQAT: An Online Machine Learning Framework
for Real-Time Data Quality Assurance in IoT

Marcos Lima Romero and Ricardo Suyama

Abstract— The Internet of Things (IoT) revolutionizes agri-
culture, but the quality of the generated data often hinders
reliable decision making. This study introduces the Data Quality
Assurance Tool (DQAT), an open-source event-driven framework
tailored for real-time data assessment in IoT systems. DQAT’s
modular architecture enables seamless integration with existing
applications and facilitates end-to-end scenario simulations. Us-
ing online machine learning algorithms like Half-Space Trees
and Support Vector Machines, DQAT detects anomalies in
streaming data, outperforming traditional batch methods. Eval-
uation with agricultural datasets demonstrates DQAT’s ability
to monitor critical data quality dimensions, including accuracy,
completeness, timeliness, and availability. This research directly
contributes to the improvement of the trustworthiness and utility
of data for informed decision making in the IoT sector.
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I. INTRODUCTION

The enthusiasm for Artificial Intelligence (AI) solutions has
sparked questions about how it will impact individuals, society,
and the economy, driving enormous investments. Nevertheless,
to achieve the desired positive return of these investments
and benefit for both individuals and society, attention to Data
Quality is fundamental. AI solutions rely in general on high-
quality data inputs for success [1]. Poor data quality has led
to catastrophic consequences around the world, such as the
NASA Challenger space shuttle explosion in 1986, where
flaws in Data Quality dimensions, such as accuracy, complete-
ness, consistency, relevance, and relevance, were determining
factors of the disaster [2]. Another example of the significant
role that data quality plays in society was the 2008 financial
crisis, which was exacerbated by poor data quality in the
subprime mortgage market. Inaccurate risk assessments and
lack of transparency in mortgage data contributed to poorly
informed investment decisions, leading to the collapse of major
financial institutions [3].

In the context of Brazilian agriculture, the Internet of
Things (IoT) generates vast amounts of data from sensors,
weather stations, and other sources. Although these data have
the potential to transform farming practices, the quality of
these data is often compromised. Inaccurate sensor readings,
missing data points, and delays in data transmission can lead
to erroneous predictions, suboptimal resource allocation, and
ultimately reduced crop yields. For instance, inaccurate soil
moisture data could result in over- or under-irrigation, while
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delayed pest infestation alerts could miss critical intervention
windows [4].

Several articles have highlighted the complex challenges of
ensuring data quality in IoT systems [5]. These challenges
arise from the inherent variety and heterogeneity of data
sources, ranging from diverse sensor types to mobile devices,
each producing data in different formats and structures. The
dynamic nature of IoT environments, with devices constantly
joining and leaving the network, further complicates data
quality assurance. Furthermore, the lack of standardization
and interoperability between different devices and IoT plat-
forms exacerbates these issues [6]. Despite these recognized
challenges, the issue of inadequate Data Quality in IoT often
remains overlooked, potentially leading to significant financial,
operational, and even safety consequences if left unaddressed.

A major challenge in real-world IoT systems is maintaining
data quality in real-time. Although previous initiatives have
attempted to automate data quality management, most have
not fully applied online machine learning algorithms that can
adapt to data drift and concept drift over time. Data drift
occurs when the statistical properties of the input data change
over time. These changes can be due to intentional malicious
actions, such as attackers altering their behavior to evade
detection, or unintentional circumstances such as data quality
issues [7]. Concept drift can be described as the changes in
the pattern and relations of the target in a data stream, thus
existing models trained offline become rapidly obsolete [8].
Although several works have addressed concept drift in IoT
systems, including anomaly and intrusion detection, none have
specifically focused on the impact of concept drift on data
quality dimensions [7], [9], [10], [11].

To address these challenges, this study introduces the Data
Quality Assurance Tool (DQAT)1, an open-source, event-
driven software framework designed to seamlessly integrate
with real-world IoT applications. DQAT leverages on-line ma-
chine learning algorithms, implemented using Python libraries
River2 [12] (a dedicated framework for online machine learn-
ing and data stream mining) and PySAD3 [13], such as Half-
Space Trees (HST) and One-Class Support Vector Machines
(OCSVM), for real-time anomaly detection in streaming data,
offering advantages over traditional batch methods. The modu-
lar architecture of the tool is a key feature, enabling flexibility
and customization, allowing it to adapt to the dynamic nature
of IoT environments and diverse data sources. By focusing

1https://github.com/RomeroCode/DQAT
2https://riverml.xyz/
3https://pysad.readthedocs.io/
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on the detection, interpretation, and adaptation to concept
drift, DQAT aims to enhance the reliability and stability
of anomaly detection models in IoT systems. The tool was
designed to be agnostic to data inputs and to function with
minimal configuration requirements. It also performs online
data profiling, updating with each new data entry, and provides
crucial information on availability and accuracy, and other
relevant data quality dimensions.

II. BACKGROUND

A. Data Quality

The concept of data quality has been widely discussed in
research on the topic. Data quality is defined by a degree of
quality according to the purpose of the data for a particular
need. In addition to this gradual concept, there is a dimensional
approach to data quality, which means that there are several
facets of data that must be observed, each with a level of
adherence to overall quality.

Organizations such as the International Organization for
Standardization (ISO) and Data Management Association In-
ternational (DAMA) have initiatives to standardize concepts
and practices involving data quality. ISO 8000 [14] defines
data quality as the degree to which the inherent characteristics
of the data meet demands; ISO 25012 [15] defines it as the
degree to which the characteristics of the data satisfy the stated
and implied needs when used under specified conditions;
DAMA-DMBOK2 [16] defines data quality as how well the
data meet the expectations and requirements of those who use
them.

Furthermore, Karkouch et al. [17] specifically described the
data quality for the IoT as appropriate device data collected to
provide ubiquitous services to users of the IoT. The definitions
used in these references differ in some terms, but all agree
that there is a degree of adherence in which data must meet
to be considered of high quality, the degree of data fitness
for the application. Various authors point out many different
dimensions, but, specifically for IoT, the main data quality
dimensions cited are:

• Accuracy: The degree to which data reflects the true state
of the entities it represents. Inaccurate data can lead to
incorrect conclusions and faulty decisions.

• Completeness: The extent to which all required data
elements are present. Missing data points can hinder
analysis and create gaps in understanding.

• Confidence: The degree to which data contains a real
value within a range.

• Timeliness: The degree to which data is available and up-
to-date when needed. Outdated data can lead to missed
opportunities or incorrect decisions.

• Availability: The extent to which data is available and
retrievable.

A previous systematic survey obtained 667 software ded-
icated to data quality [18]. They found that more than half
of the existing tools are domain-specific and none addressed
all the most important data quality dimensions simultaneously
(accuracy, consistency, timeliness, and completeness). Among
open-source tools, Apache Griffin is the most similar tool to

the proposed implementation, but was reported to have a lot of
dependencies, relies on Apache Spark, does not have an event-
oriented architecture and still needs some SQL abstraction.

B. Anomaly Detection in Data Streams

Several methods have been proposed for anomaly detection
in scenarios with static data, i.e., data are available beforehand
to train the model. Some of the proposed methods include
Isolation Forest [19], that work by isolating anomalies in
the dataset rather than modeling the normal data points by
randomly selecting a feature and then randomly selecting a
split value between the maximum and minimum values of
the selected feature to isolate the anomaly; Local Outlier
Factor (LOF) [20], which identifies anomalies by comparing
the local density of a point to its neighbors; One-Class Support
Vector Machines (OCSVM) [21], that operates separating
normal data from anomalies by identifying a hyperplane
that maximizes the margin between the data points and the
origin; Clustering algorithms, such as Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), can also
be used labeling points in sparse regions as anomalies [22];
k-d Trees, which organize points in a k-dimensional space
for nearest neighbor searches, aiding density-based anomaly
detection. These methods focus on detecting anomalies using
data distribution and space-partitioning techniques.

Static data learning and batch learning face challenges in
addressing the dynamic nature of IoT environments, which
continuously generate massive amounts of data. Often, appli-
cations lack sufficient data to train machine learning models,
and limited computing resources can make storing training
data problematic. Machine learning in data streams, on the
other hand, presents distinctive features, including the con-
tinuous generation of potentially unbounded data over time,
which requires single-pass processing due to the impractical-
ity of storing the entire stream [23]. Anomalies, being rare
occurrences, often require learning from predominantly normal
instances only, with models needing to adapt to evolving data
distributions and concept drifts. Moreover, memory and com-
putational efficiency are paramount, with algorithms needing
to operate within limited memory and in real-time, while
maintaining scalability with data volume. Robustness against
noise and outliers, along with parameter insensitivity for stable
performance across diverse datasets, are essential. Incremental
learning enables continuous model updates without complete
retraining, facilitating autonomous operation with minimal
human intervention. These characteristics are important for
effective anomaly detection in dynamic and large-scale data
environments such as network traffic monitoring and real-time
fraud detection.

There are a few open-source libraries that implement ma-
chine learning methods for stream setting, such as PySAD
[13], Creme [24], scikit-multiflow [25], and River [12], which
combines the two aforementioned projects in a new archi-
tecture and expands their functionality. These improvements
include support for mini-batches, processing time improve-
ments, new metrics for classification, regression, and clus-
tering, additional clustering methods, etc. In this work, we
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Fig. 1. DQAT basic architecture.

implemented the PySAD and River methods, conducted a
benchmark evaluation, and chose to employ two anomaly
detection River methods: Half-Space Trees (HST) [26], which
is a method used for anomaly detection, particularly in high-
dimensional data, based on the same idea followed in isolation
forests; and a stochastic implementation of the One-Class
SVM (OCSVM) algorithm.

III. PROPOSED FRAMEWORK

We addressed the data quality problem by developing the
Data Quality Assurance Tool (DQAT), an open-source soft-
ware framework designed for seamless integration with real-
world IoT applications. DQAT leverages freely available tools
like Kafka4 for message brokering, InfluxDB5 for time-series
data storage, and Python’s River and PySAD libraries for
online machine learning. This enables DQAT to efficiently
load data from event producers, normalize headers, apply real-
time anomaly detection algorithms, perform data profiling, and
store results in the database. The modular architecture of the
tool facilitates integration with existing systems and its user-
friendly dashboard provides a comprehensive view of data
quality metrics.

A. Architecture

Considering the challenge of ensuring data quality inside
the complex IoT scenario in near real time, we suggest an
event-driven architecture [27], as shown in Fig. 1.

The layers are described as follows:
• Event Layer: This layer serves as the entry point for

data into DQAT. It deals with events from various data
sources, such as IoT sensors, databases, or message
queues. The event layer uses event producers to publish
events in a standardized format. The tool then utilizes
Kafka topics to distribute these events to the appropriate
processing components.

• Processing Layer: This layer houses the core data
quality assessment logic, implementing River or PySAD

4Apache Kafka is an open-source stream message processing platform
aiming to delivery high throughput and low latency for mission-critical
applications. https://kafka.apache.org

5InfluxDB is a time-series open-source database developed by Influx-
Data®most used in real time analysis. https://www.influxdata.com/get-influx/

Fig. 2. Data flow between the different layers and components of DQAT.

libraries. It processes incoming events, performs head-
ers normalization and check, applies anomaly detection
algorithms, and updates the statistics to data profiling.

• Integration Layer: This layer suggests the interaction
between DQAT and external systems, that has not been
yet implemented. It could define data contracts, specify-
ing the level of data quality exchanged between DQAT
and other applications. Data contracts can be imple-
mented using JSON or custom interfaces.

• Persistence Layer: This layer stores data profiles,
anomaly detection results, and other relevant metadata
generated by DQAT. It also handles the scheduling of
actions related to the periodic check and sending alert
events. The persistence layer uses InfluxDB.

• Monitoring Layer: This layer provides visibility into the
data quality status of the system. It generates dashboards,
reports, and alerts based on the data quality metrics cal-
culated by DQAT. The monitoring layer uses InfluxDB’s
embedded dashboards. It also send alerts through log
files.

• Security Layer: This layer ensures the security and
integrity of DQAT and its data. It manages user au-
thentication, authorization, and access control to different
functionalities within the tool.

B. Data Flow

The DQAT data flow starts by reading raw sensor data from
CSV files within the data folder, as shown, for example, in
Fig. 2. The producer module emulates real-time data streams,
processing the data (e.g., replacing commas, handling non-
float values) and converting it into JSON format. Headers are
dynamically inferred, and events are produced as Kafka topics
for downstream processing.

The header processor module consumes events from the
Kafka topic, ensuring consistent header formats across various
data sources. It checks for the presence of expected headers
informed previously in the configuration files, applies normal-
ization where necessary, and logs errors for missing headers.
The standardized data are then forwarded to another Kafka
topic.

Two parallel processes operate on the standardized data
stream:
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• Data Profiling: The data profile module, leveraging the
River library for online learning, continuously calculates
rolling statistics (e.g., maximum, minimum, mean, vari-
ance) for each sensor parameter. These statistical profiles
are stored in an InfluxDB time series database, facilitating
real-time monitoring and analysis.

• Anomaly Detection: The anomaly detection module also
uses River for online learning, implementing the HST
and OCSVM algorithms for anomaly detection. These
algorithms identify unusual patterns or outliers in the
incoming data stream, identifying potential data quality
issues. Detected anomalies are logged and stored in
InfluxDB along with the data profiles.

InfluxDB serves as the central repository for both data
profiles and anomaly detection results. This allows for efficient
storage and retrieval of time series data, enabling historical
analysis and the creation of informative dashboards. The
DQAT modular architecture facilitates integration with other
tools, allowing stakeholders to monitor data quality metrics
and anomalies in real time.

IV. RESULTS

A. Dataset

To assess the effectiveness of DQAT, we used a real-
world data set6 from a remotely monitored aquaponic fish
pond water quality management system developed at the
University of Nigeria, Nsukka. This dataset provided a rich
source of labeled data from conventional and aquaponic catfish
ponds, encompassing various water quality parameters and fish
growth metrics.

The aquaponics dataset comprised sensor readings collected
from June to mid-October 2021 in 12 catfish ponds. Each
pond’s IoT unit housed six sensors that measure temperature,
turbidity, dissolved oxygen (DO), pH, ammonia, and nitrate
levels. Data were collected at 5-second intervals, resulting
in more than 170,000 instances per unit at the time of
analysis. Additional attributes included the population, length,
and weight of the fish in each pond.

B. Metrics

Addressing the results of the availability dimension pre-
sented in Fig. 3 reveals insights into the operational status
of the IoT monitoring system deployed in various fish ponds
(IoTPond1 - IoTPond11). IoTPond1, IoTPond2, IoTPond3,
IoTPond4, IoTPond6, IoTPond8 and IoTPond9 exhibit near-
complete data availability during the observed time frame.
IoTPond10, IoTPond11, and IoTPond12 exhibit very low data
availability, indicating potential intermittent failures or gaps
in data collection during the period. This could be due to
temporary sensor malfunctions, connectivity issues, or other
factors that impact system performance. The interruption or
failure in monitoring these ponds can be attributed to sensor
damage, power outages, or other critical issues.

6https://www.kaggle.com/datasets/ogbuokiriblessing/sensor-based-
aquaponics-fish-pond-datasets

Fig. 3. Availability from InfluxDB dashboard.

Fig. 4. Anomalous sensors detected by HST and OCSVM from InfluxDB
dashboard.

Fig. 4 illustrates the results of anomaly detection in IoT
sensors using two different algorithms: HST and OCSVM.
At the time of simulation, according to the HST algorithm,
only the IoTPond3 sensor exhibited anomalous behavior dur-
ing this time frame. In contrast, the OCSVM algorithm
identified anomalies in three sensors: IoTPond9, IoTPond6,
and IoTPond2, with IoTPond2 showing a longer duration of
anomalous behavior compared to the others. These findings
demonstrate the potential for different algorithms to identify
distinct sets of anomalies within the same dataset.

The time series data reveal an anomalous measurement of
ammonia detected by the HST algorithm in the IoTPond11
sensor, as shown in Figure 5. IoTPond11 recorded an ex-
ceptionally high and inconsistent ammonia level exceeding
15x106 g/ml, significantly deviating from the baseline mea-
surements observed earlier in the time series. This abrupt and
extreme increase in ammonia concentration suggests a possible
anomaly in the sensor reading or an environmental event that
affects ammonia levels. More research is needed to determine
the cause of this unusual measurement.

DQAT leverages on-line learning algorithms that can contin-
uously adapt to changing data patterns, improving the model’s
accuracy over time even without explicit labels. Although
unsupervised anomaly detection offers several advantages, it
also has limitations. Without labeled data, it can be challenging
to assess the accuracy and precision of anomaly detection
models. Furthermore, after a period of simulation, instances
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Fig. 5. Highlight of sensor IoTPond11 with anomalous measurement of
ammonia detected by HST.

of higher anomaly values tended to overshadow other less
prominent anomalies. This phenomenon is likely attributed to
the use of scaler preprocessors in both the HST and OCSVM
algorithms.

V. CONCLUDING REMARKS

In conclusion, this study introduced DQAT, an open-source
event-driven data quality assurance tool designed to address
the challenges of real-time data monitoring in IoT systems.
By focusing on critical data quality dimensions, DQAT en-
ables proactive anomaly detection in complex, data-intensive
environments.

Through the evaluation of a real-world dataset, we demon-
strated DQAT’s ability to identify anomalies in sensor read-
ings, highlighting potential issues with data availability and
accuracy. This showcases the potential of the tool to improve
decision making. Although our initial experiments focused
on a specific set of data quality dimensions and a particular
dataset, DQAT’s modular architecture and flexible design
allow for its adaptation to diverse applications and a broader
range of data quality concerns. Future iterations of DQAT can
be improved by expanding the range of supported anomaly
detection algorithms and incorporating advanced visualization
techniques.

By providing a comprehensive, adaptable and open-source
solution for data quality assurance, DQAT has the potential to
empower stakeholders in various industries to harness the full
potential of IoT data for informed decision-making.
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