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Improving Acoustic Echo Cancellation by
Exploiting Prior Knowledge of RIR Energy Decay

Pedro de Carvalho Cayres Pinto, Roberto Esteban Campos Ruiz, Mariane Rembold Petraglia

Abstract— Acoustic echo cancellation (AEC) through adaptive
filters requires a very large number of coefficients to establish
good communication in reverberant environments. In order to
increase the convergence rate of the adaptive algorithm, in this
paper we explore the exponential decay rate of the room impulse
response (RIR) by introducing an additional constraint, based
on the energy behavior of sequential blocks of coefficients, into
the optimization problem. The performances of the proposed
algorithms are investigated in different scenarios and compared
with the performance of traditional algorithms employed in
the AEC application. We also examine the influence of the
algorithms’ parameters in the convergence rate and final solution.
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I. INTRODUCTION

Adaptive filters have been applied to the acoustic echo
cancellation (AEC) problem in order to identify the echo paths,
present in hands-free communication systems. A good solution
is generally not easy to obtain for acoustic environments with
high reverberation, due to the non-stationary and coloring
properties of the voice signals and the long filter length
required to model the echo path.

Among the adaptive algorithms used in the AEC appli-
cation, stand out the normalized least squares (NLMS), the
proportionate normalized least mean square (PNLMS), and
the affine projection algorithm (APA). The NLMS [1], [2]
algorithm presents low computational complexity and robust
convergence, but reduced learning rate for colored input sig-
nals. The PNLMS [3] algorithm has been proposed for mod-
eling sparse systems, and also has low convergence rate for
colored input signals. The APA [2], [4] updates weights based
on current and previous input vectors to improve convergence
speed for correlated input signals.

In recent years, different mechanisms have been intro-
duced into the adaptive filters to increase their convergence
rate and/or reduce their computational complexity, including
frequency-domain techniques [5], subband processing [6],
decorrelation [7], and block processing [8]. Especially in
environments with high reverberation, obtaining a satisfactory
solution in a short period of time remains a challenge [9].

In this paper we exploit the exponential behaviour of the
room impulse response (RIR) to develop a novel adaptive
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Fig. 1: Acoustic Echo Cancellation.

filtering method for acoustic echo cancelation. We formulate
the AEC as a constrained optimization problem and solve it
using the Lagrange multipliers method. NLMS algorithm and
APA are modified accordingly to generate new algorithms.
The Aachen Impulse Response (AIR) [10] database of RIRs
is employed in our experiments.

II. BACKGROUND

The purpose of acoustic echo cancellation is to remove an
audio signal that reverberates around the room from another
signal of interest. This problem is illustrated in Fig. 1. When
there is no local voice signal, the microphone signal d(k) can
be modeled as

d(k) = x(k) ∗ h(k) + v(k), (1)

where x(k) is the clean signal from the speaker, h(k) is the
RIR, and v(k) is a random noise. We therefore wish to obtain
the coefficients of a finite impulse response (FIR) filter w(k)
that approximates the RIR h(k). The NLMS and APA are two
iterative algorithms that can be used to obtain the coefficients
of the adaptive filter.

Defining w(k) as the vector containing the N coefficients
of the adaptive filter at iteration k, the NLMS formulation as
a constraint optimization problem is given by

min
w(k+1)

∥w(k + 1)−w(k)∥2

s.t. ep(k) = (1− β)e(k)

with 0 < β < 1,

(2)

where

x(k) = [x(k), x(k − 1), . . . , x(k −N + 1)]T (3)

is the input vector,

e(k) = d(k)−w(k)Tx(k) (4)
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is the a priori error, and

ep(k) = d(k)−w(k + 1)Tx(k) (5)

is the a posteriori error. The solution of the optimization
problem (2) is given by

w(k + 1) = w(k) +
βe(k)

∥x(k)∥2
x(k). (6)

Likewise, a formulation for APA is given by

min
w(k+1)

∥w(k + 1)−w(k)∥2

s.t. ep(k) = (1− β)e(k)

with 0 < β < 1,

(7)

where
e(k) = d(k)−X(k)Tw(k) (8)

is the a priori error vector,

ep(k) = d(k)−X(k)Tw(k + 1) (9)

is the a posteriori error vector obtained with the updated
coefficient vector w(k + 1), with

d(k) = [d(k), d(k − 1), . . . , d(k − l + 1)]T (10)

and
X(k) = [x(k),x(k − 1), . . . ,x(k − l + 1)] (11)

for l restriction equations. The solution for the optimization
problem (7) is given by

w(k + 1) = w(k) + βX(k)[X(k)TX(k)]−1e(k). (12)

III. NEW METHODS

Assuming that an estimate of the RIR is available, we
develop variations of NLMS and APA by introducing into
the objective function a term related to the ℓ1-norm of the
difference between the energies of each adaptive coefficient
block and of the corresponding RIR block. This new term
penalizes solutions for the coefficient vector that do not
comply with the exponential decay of the RIR. In the case
of NLMS, this extension leads to the optimization problem:

min
w(k+1)

∥w(k + 1)−w(k)∥2 +
b∑

i=1

αi|∥wBi(k + 1)∥2 − γi|

s.t. ep(k) = (1− β)e(k)

with 0 < β < 1,
(13)

where, for each block i, the vector wBi
(k) contains nb

coefficients of w(k) whose indices are in the contiguous list
{(i − 1)nb + 1, · · · , inb}, γi = ∥hBi∥2 is the corresponding
RIR block energy, and αi is a multiplier parameter. Thus, the
vector w(k) is given by

w(k) =
[
wB1

(k)T wB1
(k)T · · · wBb

(k)T
]T

(14)

and has a total of N = b · nb coefficients.

From the method of Lagrange multipliers, the solution must
satisfy, for each block i, the equation:

∇wBi
(k+1)J(w(k + 1)) =

2wBi(k+1)−2wBi(k)+2αisiwBi(k+1)−λxBi(k) = 0,
(15)

where si ∈ {−1, 1} is the sign defined as

si = sign(∥wBi
(k + 1)∥2 − γi). (16)

From Eq. (15), we obtain

(1 + αisi)wBi
(k + 1) = wBi

(k) +
λ

2
xBi

(k). (17)

Joining the equations from all blocks, we can write:

diag(1 + αs)w(k + 1) = w(k) +
λ

2
x(k), (18)

where s ∈ {−1, 1}bnb is the concatenation of the nb vectors
[si, si, . . . , si] ∈ {−1, 1}b for all i, and α ∈ Rbnb is defined
analogously. From the restriction of (13), we obtain

βe(k)− (w(k + 1)−w(k))Tx(k) = 0, (19)

which yields, by substituting w(k + 1) from Eq. (18),

λ

2
=

βe(k) +w(k)T diag
(

αs
1+αs

)
x(k)

∥x(k)∥2
diag( 1

1+αs )

. (20)

From Eqs. (18) and (20), we obtain the update equation for
the new method, which we refer to as NLMS+BEO:

w(k + 1) = diag
(

1

1 + αs

)
w(k)+

diag
(

1

1 + αs

) βe(k) +w(k)T diag
(

αs
1+αs

)
x(k)

∥x(k)∥2
diag( 1

1+αs )

x(k).

(21)

Similarly, by including the block energy term to APA, we
obtain the update equation for the APA+BEO algorithm:

w(k + 1) = D1w(k)+

D1X(k)[X(k)TD1X(k)]−1[βe(k) +X(k)TD2w(k)], (22)

where D1 and D2 are the diagonal matrices given by

D1 = diag
(

1

1 + αs

)
(23)

and

D2 = diag
(

αs

1 + αs

)
(24)
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IV. SIMULATION RESULTS

Experiments with simulated data were conducted in order
to compare the performances of the traditional adaptive al-
gorithms and the proposed new versions. The measured RIR
of a lecture room from the Aachen Impulse Response (AIR)
database [10], with reverberation time T60 = 0.78 s and
sampling rate fs = 16 kHz, was employed in all experiments.
The number of adaptive coefficients was N = 8000.

The performances of the adaptive algorithms were evaluated
using the Mean Square Deviation (MSD) metric, defined as

MSD(k) = E[∥wopt −w(k))∥2], (25)

where E[.] denotes the statistical expectation operator, wopt

is the impulse response of the plant and ∥.∥ is the ℓ2-norm
operator. Mean values were approximated by calculating the
average over 50 executions of the experiment.

The first three experiments were conducted with white
Gaussian noise input signal (3 × 105 samples) with variance
σ2
x = 1. In the colored noise experiment, the white noise

was passed through a filter with transfer function H(z) =
1+0.8z−1−0.2z−2, and in the last experiment the input signal
was a male or a female voice recording. In all experiments the
additive noise v(k) is a white Gaussian noise with variance
σ2
v = 10−3, β = 1, and the number of restriction equations

for APA is l = 4. The values α = 0.001 and nb = 100 were
used in all simulations, except when these parameters were
varied to observe their influence on the performance of the
proposed algorithms. The values of γi were computed exactly
from the RIR. In practice, their values would be obtained from
the blind estimate of T60 [11], [12].

A. White Noise Input

The MSD results of all four methods for white noise input
are shown in Fig. 2. The modified algorithms present better
results, converging faster and to lower MSD values. The results
for APA and NLMS are almost identical, which is expected,
since there is no correlation between input samples from
different time instants.

B. Block Size Analysis

The MSD results of the NLMS+BEO algorithm for different
block sizes are shown in Fig. 3. From this figure, it can be
seen that the performance of the algorithm is not sensitive to
the number of blocks. Smaller block sizes produce slightly
better results.

It is worth mentioning that this result was obtained with
exact values of the energies of the RIR blocks. It is expected
that when estimated values for the γi parameters are used, the
optimal block size will depend on the accuracy of the estima-
tion method. In practice, a blind estimate of the reverberation
time [12] would be used, the accuracy of which is influenced
by the characteristics of the room (such as size and number
of people inside it) and the quality of the audio equipment,
among other factors. For scenarios with low accuracy estimates
of T60, it would be recommended to use a reduced number of
blocks.
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Fig. 2: MSD evolution for all methods with white noise input.
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Fig. 3: Analysis of block size influence on MSD evolution for
NLMS+BEO with white noise input.

C. Alpha Values Analysis

The MSD results of the NLMS+BEO algorithm for different
values of α are shown in Fig. 4. The best α value evaluated for
the simulated RIR was 0.001. From the curves, it can be seen
that the proposed algorithm is quite insensitive to the choice
of α over a wide range (from 0.01 to 0.0001). Additional
investigations, including theoretical analyses, are necessary to
obtain the best value of the α parameter for other RIRs.

Again, it is expected that when estimated values for the
γi parameters are used, the optimal value of the α parameter
will be influenced by the estimation error. If a very accurate
estimate is not likely, the weight given to the additive term
should be less than when a good estimate is obtained.

D. Colored Noise Input

The MSD results for all four methods with colored noise
input are shown in Fig. 5. The modified algorithms exhibit
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Fig. 4: Analysis of α value influence on MSD evolution for
NLMS+BEO with white noise input.

better results, converging faster than their counterparts.
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Fig. 5: MSD evolution for all methods with colored noise
input.

E. Speech Signal Input

Figures 6 and 7 show the MSD results of all methods for
female and male voice signals, respectively. The APA+BEO
approach presented the best results for both voice signals.

It can be observed that the weights of the modified methods
deviate from the optimal solution in the first iterations, which
indicates that the initialization of the new algorithms still need
some adjustments.

V. CONCLUSIONS

In this paper we develop variations of two adaptive algo-
rithms for acoustic echo cancellation applications by taking
into consideration some available estimate of the exponential
energy decay of room impulse responses. Experiments were
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Fig. 6: MSD evolution for all methods with a female voice
signal.
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Fig. 7: MSD evolution for all methods with a male voice
signal.

conducted employing a measured impulse response of a lecture
room, using white Gaussian noise, colored noise and speech
as input signals. Results demonstrated a faster convergence
of the proposed algorithms compared to the classical NLMS
and APA. The proposed NLMS+BEO algorithm is faster than
NLMS in simulated experiments with stationary input signals.
The proposed APA+BEO is faster than APA in all cases.
Future work includes theoretical and experimental analyzes
to determine the optimal value ranges for the parameters α
and nb, taking into account inaccuracies in the estimates of
the values of T60 and γi.
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