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On the blind source separation of nonlinear mixtures
Alexandre Miccheleti Lucena, Kenji Nose-Filho, Ricardo Suyama

Abstract— In this paper we analyze the method proposed by
Ehsandoust et. al for the blind source separation of nonlinear
mixtures. Interestingly, the initially proposed method based on
deriving the observed signals, performing an adaptive linear
blind source separation, smooth the coefficients of the separation
matrices and integrate the solution can be reduced, in some
cases, by simply performing an adaptive linear blind source
separation and smooth the coefficients of the separation matrices.
Also, we extend the results for different sets of signals such as
autoregressive signals and propose an alternative method, based
on a General Regression Neural Network, for the smoothing of
the Jacobian matrix.

Keywords— Blind source separation, nonlinear mixtures, inde-
pendent component analysis, nonlinear regression, autoregressive
model.

I. INTRODUCTION

Blind source separation can be considered one of the main
problems within the realm of signal processing theory and has
vast applications in various fields, such as audio processing,
biomedical signals, and telecommunications, among others
[1]–[3]. Essentially, the goal is to estimate signals of interest
(the sources) from observations corresponding to an unknown
mixture of the original signals, and different techniques have
been developed to tackle this problem. They explore different
characteristics of the signals and the mixing process, leading
to well-established paradigms such as Independent Component
Analysis (ICA) [4], Sparse Component Analysis [5], and Non-
negative Matrix Factorization [6], among others.

It is interesting to note, however, that most of the developed
tools apply to linear mixtures, and the development of solutions
for scenarios where the mixing process is nonlinear has
been less intense and targeted at specific models. Among the
commonly addressed models are the post-nonlinear model, the
linear-quadratic model, and the exponential model [7].

One of the reasons why attention has been focused on
the aforementioned nonlinear models is due to the fact that
the statistical independence of the sources remains a guiding
criterion for seeking solutions, thus allowing the framework
developed for the linear context to be extensively reused.

In this sense, the work proposed by [8] introduced a new
perspective for the separation of nonlinear mixtures by still
exploring the concept of ICA. The idea, of course, does not
apply to all types of nonlinearity, but rather to models where
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the distortion can be considered "smooth," and the sources also
do not exhibit abrupt variations.

In this scenario, the mixing process can be locally approxi-
mated as a linear mixture. Thus, considering that the sources are
independent, ICA can be applied to the different local mixtures
so that, globally, the source signals would be recovered. The
method presents interesting results, but the original work did
not address some aspects related to its effectiveness for other
types of nonlinearity, or even other types of sources.

Therefore, in the present work, a new study of this approach
is conducted, aiming to verify under what conditions the method
is effective and whether there are any simplifications that can be
explored to improve the quality of the source estimates, thereby
enabling its application in practical scenarios. We propose
a modification of the BATIN algorithm [8] by including a
General Regression Neural Network (GRNN) as an alternate
to the nonlinear regression step and evaluate its performance.

With this objective in mind, the article is structured as
follows. In Section II, we discuss the fundamentals of the
nonlinear separation problem and detail the separation method
based on linearization. In Section III, we elaborate on the
specific modeling used for sources and nonlinear mixtures and
algorithms to be considered in the simulations. In Section IV,
we present and discuss the results of the simulations, concluding
with some final considerations in Section V.

II. NONLINEAR BLIND SOURCE SEPARATION

The general formulation for the Nonlinear BSS (NLBSS)
model can be written as

x(t) = f(s(t)), (1)

where s(t) is a time-varying vector of the source signal s(t) =
[s1(t), ..., sn(t)]

⊤, f(.) is a nonlinear function from Rn to
Rm, and x(t) = [x1(t), ..., xm(t)]⊤ is the resulting nonlinear
mixture. Ideally, the separation in this case is to find a function
g(.) = f−1(.) that is capable of reversing the effects caused
by f(.), leading to estimated sources y(t) as in

y(t) = g(x(t)). (2)

Although the general formulation for the NLBSS model
seems straightforward, there are characteristics regarding f(.)
that need to be considered (e.g. invertible) for the source
estimation to be possible, since nonlinear functions can appear
in many forms. This may lead to different assumptions on
f(.), resulting in different approaches depending on the kind
of nonlinearity. This means that it might be difficult to propose
a general algorithm for achieving source separation for all
nonlinear mixing models.

One approach to the general NLBSS problem is to transform
the model into a time-varying linear one. This is proposed and
explained in detail in [8] and summarized in the sequence.
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Fig. 1. Transforming the nonlinear BSS problem model to the linear time-
variant one. [8].

A. Local linear approximation

Assuming f(.) is time-invariant, the mixing process is a fixed
nonlinear mapping that transforms the sources into the observed
mixture. Additionally, assuming it is a smooth mapping, one
may approximate f(.) via Taylor expansion as:

x(t) = f(s(t)) ⇒

∀t x(t+ ϵ) = x(t) +
∂f

∂s
(s(t+ ϵ)− s(t)) + o(ϵ)

(3)

⇒ x(t+ ϵ)− x(t) ≈ Jf ;t(s)
∣∣∣
s=s(t)

(s(t+ ϵ)− s(t)) (4)

⇒ ∆x(t) ≈ Jf ;t(s)
∣∣∣
s=s(t)

∆s(t) (5)

where Jf ;t(s) is the Jacobian matrix of the nonlinear mixing
function, o(ϵ) represents Higher-Order Terms and ∆x(t) and
∆s(t) are the differences (increments) of the observation and
source vectors respectively [8].

Notice that, under this assumption, the nonlinear time-
invariant mixture can be seen as a linear time-variant one,
as illustrated by Figure 1. Alternatively, the model becomes

ẋ = Jf ;t(s)ṡ, (6)

with ẋ and ṡ denoting the time (or sample) derivatives of x
and s respectively. Note that, although s(t) may vary over time,
the Jacobian matrix does not directly depend on t: it actually
depends on the values of s, and the changes observed in the
mixture x are due to different s and Jf ;t pairs, hence a local
linear instantaneous mixture model.

From the described model, it is easily seen (Figure 1) that
sources can be estimated by reversing this local mixing process,
as in

ẏ = Jg;t(x)ẋ, (7)

where Jg;t is the Jacobian (separation) matrix of g(.) = f−1(.)
and ẏ is the estimated sources derivatives. Nevertheless, some
additional assumptions have to be considered to correctly
recover the signals.

The first assumption is that the function f is invertible, so
g exists. As discussed above, f needs to be time-invariant and
also memoryless; otherwise, its Jacobian would also vary over
time. Lastly, the nonlinear function f and the sources x need to
be differentiable (first-order) and have continuous derivatives.
Since the model is meant to allow separation via ICA, other
common assumptions may be considered, such as the number
of the sources being equal to the number of the observations,
the source derivatives must be mutually independent, and, at

most, one of the derivatives of the sources follows the Gaussian
distribution.

B. Separation Algorithm

The time-varying interpretation of the nonlinear function as
a local linear mixture allows the use of ICA-based methods to
recover the sources. However, since Jg;t is time-variant due
to source variations, the ICA method used needs to be able to
follow those variations (i.e. to be adaptive).

In [8], two general separation algorithms are proposed and
investigated. The first one, the Adaptive Algorithm for Time-
Invariant Linear Mixtures (AATVL), is a direct application of
an adaptive ICA algorithm over the derivative of nonlinear
mixed signals, following the exact nonlinear model described
in Section II-A Although any adaptive ICA method can be
applied, in [8] the authors choose the N-EASI (Normalized
Equivariant Adaptive Separation via Independence) [9] as the
adaptive ICA algorithm for the Jg;t matrix estimation.

The N-EASI algorithm [9], is a method for blind source
separation based on the mutual independence of the sources.
One of its main features relates to the equivariant estimation,
ensuring that performance is independent of the specific mixing
matrix and depends only on the source signal distributions.
The algorithm employs adaptive serial updates, given in (8).

Jg;t+1 = Jg;t − λt

[
y(t)y(t)† − I

1 + λty(t)†y(t)

+
h(y(t))y(t)† − y(t)h(y(t))†

1 + λt |y(t)†h(y(t))|

]
Jg;t (8)

where λt is a sequence of positive adaptation steps and h(·) is an
arbitrary component-wise (n-dimensional) nonlinear function.

The second algorithm is a modification of the AATVL
algorithm, that includes a nonlinear regression step after the
adaptive ICA. This is motivated by the fact that, since f and
its inverse g, are assumed to be time-invariant and smooth,
the estimates of Jg;t obtained from the ICA algorithm can
be used to approximate the true mapping that underlies the
elements of Jg;t, although it might be affected by estimation
errors. In this sense, the Batch Algorithm for Time-Invariant
Nonlinear mixtures (BATIN) apply a nonlinear regression step
after all samples are processed by the adaptive ICA step (hence
batch) to better approximate the Jg;t estimates. The nonlinear
regression algorithm used by the authors in [8] at this step
is the smoothing splines [10]. However, it is argued that the
nonlinear regression can be replaced by different algorithms.

In [8] both algorithms (AATVL and BATIN) are presented
as a proof of concept alongside simulation results. Nonetheless,
there are still possible scenarios and modifications to be
tested for a better understanding of this approach, which are
investigated in this paper.

III. NLBSS MODEL INVESTIGATION

The local linear approximation and separation algorithm
described in Sections II-A and II-B open space to several
questions about the conditions under which the proposed
approach is valid. Even though the required assumptions are
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satisfied, there are changes regarding the sources, mixture
model, and the separation algorithm (such as the nonlinear
regression step) that can impact the overall performance of the
separation and must be investigated.

A. Source signal model

The smoothness assumption applies not only to the nonlinear
mixing function but also to the source signals. This is due
to the fact that the ICA algorithm must track variations in
the local linear approximation model. Considering that the
sources must be differentiable and have mutually independent
derivatives, for the simulations it is easier to generate derivatives
of the signals and then integrate them using the cumulative
summation approximation. The sources used in the simulations
were inspired in [8] following a sine wave

ṡ1(t) = sin(
√
3ωt) ⇒ s1(t) ∝

∫
ṡ1 dt , (9)

and a triangle (sawtooth) wave

ṡ2(t) = saw(ωt) ⇒ s2(t) ∝
∫

ṡ2 dt , (10)

representing simple signals that satisfy the proposed assump-
tions needed for the separating model.

As an alternative to this model, we propose the usage of
autoregressive (AR) source signals. To satisfy the smoothness
condition imposed on the sources, similarly to the previous
source, one may produce the derivatives of the sources follow-
ing an AR(p) model (where p is the number o coefficients)
of a slow varying signal, and then approximate the resulting
source by cumulative summation. Although the result is not
explicitly differentiable, a high enough coefficient can result
in a smooth approximation of a random signal. In this sense,
the AR source signals were generated using AR(1) following

ṡi(t) = aiṡi(t− 1) + ϵ(t) ⇒ si(t) ∝
∫

ṡi dt , (11)

where ai is the AR coefficient ϵ(t) is a random process that
follows a normal distribution p(ϵ) ∼ N (0, 1).

B. Nonlinear mixture model

For the application of the proposed method, the chosen
nonlinear models must respect the previously established
assumptions, i.e. time-invariant, memoryless, differentiable and
invertible. In that sense, two nonlinear mixture models are
explored in this work and described in the following sections.

1) Example 1: The first mapping is a nonlinear function
that mixes the sources with a rotation. However, it becomes
nonlinear as the rotation angle depends on the magnitude of
the input vector. This mixture model is proposed in [11] and
describes a nonlinear function of the sources based on a rotation
matrix, and can be described as[

x1(t)
x2(t)

]
=

[
cosα (s(t)) − sinα (s(t))
sinα (s(t)) cosα (s(t))

] [
s1(t)
s2(t)

]
, (12)

being the rotation angle determined by the magnitude of the
source vector:

α (s(t)) =
√
s1(t)2 + s2(t)2. (13)

Notice that, in this case, although the mixing process is
nonlinearly related to the sources, the mixing model can be
essentially understood as a time-varying linear mixture, i.e.,

x(t) = A1(t)s(t) (14)

2) Example 2: The second mapping is based on the
combination of exponential functions over the input sources,
defining f(s(t)) in a way that[

x1(t)
x2(t)

]
= f(s(t)) =

[
es1(t) − es2(t)

e−s1(t) + e−s2(t)

]
. (15)

Considering this mixing process, it is clear that it is not
possible to consider it as a time-varying linear mixture, as in
(14), but as a time-varying linear mixture of the derivatives:[

ẋ1(t)
ẋ2(t)

]
=

[
es1(t) −es2(t)

−e−s1(t) −e−s2(t)

] [
ṡ1(t)
ṡ2(t)

]
, (16)

ẋ(t) = A2(t)ṡ(t). (17)

C. Nonlinear regression

The nonlinear regression step appears only in the BATIN
algorithm and is a strategy to recover better overall estimates
of the Jg;t matrix. The choice for the nonlinear regression
algorithm is arbitrary, since there are many factors that can
motivate this decision (e.g. complexity, number of parameters,
etc.), and there is no discussion or comparison about this topic.

Considering its simplicity, we chose to apply the General
Regression Neural Networks (GRNN) [12], since it have only
one smoothing parameter that can be adjusted and control how
fitted to the data the estimated function is. This is an interesting
characteristic that was not explored in the original work. In
the context of the BATIN algorithm, we can write the GRNN
formulation as

[Jg(x)]ij =

∑N
k=1[Jg;k]ijK(x,xk)∑N

k=1 K(x,xk)
, (18)

where, [Jg;k]ij is the ij coefficient of the separating Jacobian
matrix estimates, K(x,xk) is a radial basis function kernel,
here chosen as

K(x,xk) = e−dk/2σ
2

, (19)

that is a Gaussian transfer function (Gaussian kernel), where
σ controls the standard deviation (width) of the Gaussian
and defines the neighborhood of influence on the data, and
therefore becomes a smoothing parameter. Also, dk is the
squared Euclidean distance between a specific mixture sample
vector xk that needs to be evaluated and the mixture data
expressed as

dk = (x− xk)
⊤(x− xk). (20)

IV. SIMULATION RESULTS

To assess the method, we perform different simulations to
investigate the proposed method concerning the source signals,
the mixing model, the smoothness of the nonlinear regression,
and also how the ICA on the source derivative performs in
comparison to the direct ICA algorithm, i.e., ignoring the
nonlinearity.
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For this purpose, two sets of sources were generated with
5000 samples each. The first set, used in results of Section
IV-A and Section IV-C follows the sine and triangle source
derivatives described in (9) and (10) with ω = 1/100. The
second set follows the AR model described in (11), and is
used in Section IV-B.

In this context, it becomes important to not only evaluate
the specific local linear approximation method for nonlinear
mixtures but also evaluate the direct application of ICA methods
(i.e. N-EASI and fastICA [13]) on the nonlinear task as a
reference. Results for the linear algorithm are shown for all
simulations.

As the BATIN algorithm benefits from a smoothing regres-
sion step, we considered applying the GRNN algorithm on the
N-EASI estimates. The results of this method will be reffered
to as N-EASIG differing from the regular N-EASI (i.e. direct
application of a linear adaptive ICA to the nonlinear mixture).
Also, to distinguish the original BATIN that uses the smoothing
spline from our approach using the GRNN as the nonlinear
separation step, the proposed variation will be referenced as
(BATING).

The quality of the recovered source signals was calculated
using the Signal-to-Interference Ratio (SIR) a quantitative
performance measurement. In summary, the SIR evaluates the
ratio between the energy of the target source si and the energy
of the residual interference signal (i.e. difference between
estimated and true signal) ei[k] = ŝi[k]− si[k] as in

SIRi := 10 log10

∑
k s

2
i [k]∑

k e
2
i [k]

. (21)

A. Smoothing parameter evaluation

The nonlinear regression step plays an important role in
the local linear approach as the BATIN algorithm has a better
performance compared to AATVL. However, many algorithms
can achieve nonlinear regression using different strategies,
resulting in more or less proximity to the reference data. As a
representative algorithm that can be easily implemented and has
simple interpretation we chose to evaluate the GRNN algorithm
to test different degrees of data fitting. The smoothing parameter
of the GRNN algorithm using a Gaussian kernel is defined by
σ, and it can be adjusted to set the amount that the regression
model is fitted to the adaptive ICA estimates.

The sine and triangle sources ((9) and (10)) were mixed
using the nonlinear model (12). Different algorithms were used
to separate the sources and the resulting signals were evaluated
in terms of SIR. In this scenario, as discussed in Section III-B.1,
the nonlinear mapping (12) can be seen as a time-varying linear
mixture, so the direct application of the N-EASI algorithm
becomes relevant.

Figure 2 shows the resulting SIR calculated for different
smoothing parameters for the methods using the GRNN
nonlinear regression. Other algorithms that do not rely on the
GRNN and hence don’t have a smoothing parameter are shown
as constants. It is possible to notice that both methods relying
on the GRNN regression have a better overall performance than
the other methods. Although only BATIN achieved relevant SIR
values, in this scenario it is evident that adaptive ICA combined

Fig. 2. SIR values for the separated smooth sinusoidal sources (ω = 1/100)
s1 (top) s2 (bottom), mixed with nonlinear model (12), for different smoothing
parameters of the GRNN algorithm.

with the nonlinear regression obtained better results than the
direct adaptive ICA (N-EASI) and the pure local approximation
(AATVL). This evidence that smoothing estimates is a relevant
step. As expected, the regular ICA algorithms performed poorly
on the separation task.

Another relevant result was obtained by repeating the same
experiment by only changing the frequency of the sources to
ω = 1/25. This change also indirectly affects the smoothness
of the sources. In this scenario the SIR values obtained for the
BATING and N-EASIG for the s1 where of the order of 25
dB and 31 dB respectively and for s2 both achieved the order
of 21 dB, almost constant for all the smoothing parameter
range, indicating that source smoothness is a factor to be taken
into account. As the values are all constant, and for saving
space on this paper, this scenario will not be illustrated. In
this case, the initially proposed method based on deriving the
observed signals, performing an adaptive linear blind source
separation, smoothing the coefficients of the separation matrices,
and integrating the results to obtain the estimated signals, can
be reduced by simply performing an adaptive linear blind
source separation and smooth the coefficients of the separation
matrices.

B. Autoregressive sources

In order to test the method with a different type of source,
we replicate the previous experiment considering AR sources.
As described by equation (11), the sources were generated
considering an AR(1) model, with a1 = a2 = 0.99, to ensure a
slowly varying signal. As in the previous section, the nonlinear
mixture model used was (12). As for the sinusoidal sources,
Figure 3 shows the resulting SIR calculated for different
smoothing parameters for the methods that use the GRNN
nonlinear regression. By analyzing the results, it is interesting
to note that, even though most algorithms were not able to
achieve high SIR values, the BATING algorithm could recover
the sources. In this case, it is not possible to claim that the
smoothing parameter influenced the algorithm’s performance.
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Fig. 3. SIR values for the separated smooth AR(1) sources s1 (top) s2
(bottom), mixed with nonlinear model (12), for different smoothing parameters
of the GRNN algorithm.

Fig. 4. SIR values for the separated smooth sinusoidal sources s1 (top) s2
(bottom), mixed with nonlinear model (15), for different smoothing parameters
of the GRNN algorithm.

C. Exponential mixture model

In this set of simulations, the linear and nonlinear methods
used in IV-A are tested in a similar manner on another nonlinear
mixture model described in (15). As discussed in Section III-
B.2, this model cannot be described as a time-variant linear
mixture and the separation may rely solely on the local linear
approach. As previously shown, Figure 4 shows the resulting
SIR calculated for different smoothing parameters for the
methods that use the GRNN nonlinear regression. Results
confirm that the only method to achieve the separation with
higher values of SIR is the BATING. However, the local linear
approximation is not sufficient since the AATVL algorithm
also performed poorly. Other algorithms were expected to have
bad performance as they are linear methods.

V. CONCLUSIONS

In this paper, we investigate a general approach to the NLBSS
problem based on a local approximation of the model, also
exploring time-varying techniques. On this matter, we propose a
modification of the BATIN algorithm on its nonlinear regression
step by using the GRNN algorithm (BATING), leading to the
best performance in most of the tested scenarios. Simulations
showed that the usage of the GRNN as a smoothing algorithm
improved the source separation performed even when applied
without the local approximation in some cases. Moreover,
a different type of smooth source based on AR(1) signals
is considered, showing that BATING was able to perform
the separation, hence opening space to considering random
processes in this kind of modeling.
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